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ABSTRACT 

Big data such as social media contents, an archive of high definition videos gathered via ubiquitous information-sensing 

devices and scientific data could be acquired and stored within an organization’s external cloud(s) and distribution retrieved by 

staffs or customers via cloud services offered by the organization. The growth of cloud computing, big data, and analytics 

compels businesses to turn into big data-as-a-service solutions in order to overcome common challenges, such as data storage 

or processing power. This paper presents new and comparative performance behaviours of Cloud and three well-known 

approaches by emulating a hybrid cloud as a testing environment. 
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1. INTRODUCTION 
Big data such as social media contents, an archive of high definition videos gathered via ubiquitous information-sensing devices and 

scientific data could be acquired and stored within an organization‟s external cloud(s) and distribution retrieved by staffs or customers 

via cloud services offered by the organization. This leads to the downstream bandwidth saturation of network connection between 

external cloud and big data consumer premise, long-delayed cloud service responsiveness and importantly increases in external cloud 

data-out charge imposed by public cloud provider . The significance of the last problem could be realized through the following 

representative scenario (which is also referred to throughout this paper): an enterprise utilizing big data re-siding in clouds by 

transferring it through 10 Gbps Metro Ethernet with 25% average downstream bandwidth utilization for 8 work hours a day, and 260 

workdays per year requires the total amount of cloud data-out transfer 190.43 TB per month. This data transfer volume can be translated 

as 29,933 USD per month based on the weighted average cost 0.1535 USD per GB of Google Cloud Storage‟s network egress charge in 

Asia-Pacific region as of September 2013. The sharing of big data can be conducted in an economical and network-friendly manner by 

using client-side cloud cache. Client-side cloud caches are located in or nearby user premise in the form of enterprise-level shared cache, 

personal web browser cache or local user-application cache. Fig.1 demonstrates the deployment scenario of a shared cloud cache where 

HTTP requests to external hybrid cloud are proxied by a cloud cache, which in turn replies with the valid copies of the requested big data 

objects either from its local cache repository (i.e., cache hits) or by retrieving updated copies from the cloud (i.e, cache misses). Cloud 

caches inherit the capabilities of traditional forward web caching proxies since cloud data is also delivered by using the same set of 

HTTP/TCP/IP protocol stacks as in WWW. Unavoidably, the same problem as in web caching proxies also exists in cloud caches that 

are caching entire remote data in the local cache is not economically plausible, thus cache eviction approach is mandatory for cloud 

caches. When the big-data hosting cloud is a kind of hybrid, which employs different public cloud providers for risk management 

purpose, different data-out charge rates potentially apply to data-outcasts and must be aware of cache eviction approach for economical 

performance optimization. 

 
Fig. 1: Cloud cache deployment in a hybrid cloud scenario 
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2. LITERATURE SURVEY 

The proliferation of data warehouses and the rise of multimedia, social media and the Internet of Things (IoT) generate an 

increasing volume of structured, semi-structured and unstructured data. Towards the investigation of these large volumes of data, 
big data and data analytics have become emerging research fields, attracting the attention of the academia, industry and 
governments. Researchers, entrepreneurs, decision makers and problem solvers view „big data‟ as the tool to revolutionize 
various industries and sectors, such as business, healthcare, retail, research, education and public administration. In this context, 
this survey chapter presents a review of the current big data research, exploring applications, opportunities and challenges, as well 
as the state-of-the-art techniques and underlying models that exploit cloud computing technologies. 

 
The growth of cloud computing, big data and analytics compels businesses to turn into big data-as-a-service solutions in order to 
overcome common challenges, such as data storage or processing power. Although there is related work in the literature in the 
general area of cost-benefit analysis in the cloud and mobile cloud computing environments, a research gap is observed towards 
the evaluation and classification of big data-as-a-service business models. Several research efforts have been devoted comparing 
the monetary cost-benefits of cloud computing with desktop grids [26], examining cost-benefit approaches of using cloud 
computing to extend the capacity of clusters or calculating the cloud total cost of ownership and utilization cost to evaluate the 
economic efficiency of the cloud. Finally, novel metrics for predicting and quantifying the technical debt on cloud-based software 
engineering and cloud-based service level were also proposed in the literature from the cost-benefit viewpoint and extended 
evaluation results are discussed by Skourletopoulos et al. 

 
Base Paper 

This paper presents the new and comparative performance behaviours of Cloud and three well-known approaches by emulating a hybrid 

cloud as a testing environment where economical costs offered by two public cloud providers are non-uniform. The main objective of 

doing this is to observe the performances of i-Cloud that has learned uniform cost patterns but is deployed against a non-uniform cost 

environment. A minor objective is to show how much i-Cloud outperforms the other approaches when data-out charge rates are non- 

uniform. The findings of these observations would convince users of iCloud performances when deploying cloud cache for a single 

private cloud at the beginning that later evolves to a hybrid cloud according to new business requirements. 

 

3. RELATED WORKS 
There are numerous cache eviction approaches in present existence. They have been extensively investigated in our previous 
works [10]. To recap, none of them aims for big data and cloud computing for two main reasons. First, those approaches evict big 
objects to optimize hit rates rather than byte-hit and delay-saving ratios, crucial to the scalability of cloud-transport infra- 
structures and the responsiveness of cloud computing services, respectively. Second, they do not support multiple public-cloud 
data-out charges, thus neither improve cloud consumer-side economy nor support hybrid cloud deployment. the i-Cloud approach, 
orig-inally proposed in [11], extends its prior non-intelligent versions [10], [12], [13] by integrating an artificial neural network 
(ANN) to automate an algorithmic parameter self-tuning for workload adaptability. Its performances have been studied without 
comparing with the other well-known approaches and based on the totally uniform cost circumstances of both ANN training and 
deployment phases. 

 
4. METHODOLOGY 
This paper presents the new and comparative performance behaviours of Cloud and three well-known approaches by emulating a 
hybrid cloud as a testing environment where economical costs offered by two public cloud providers are non-uniform. 

 
The main objective of this research to find out the i-cloud, learning uniform cost patterns, could perform well against non-uniform 
cost environment. 

 

5. CONCLUSION 
This paper presents Cloud cache eviction approach that accommodates the distributed sharing of big data. Cloud has access 
recency as a priority factor for object replacement decision. Cloud parameterizes an MLP-based self-tuning window size to gen- 
eralize the frequencies of objects within a formulated object cluster. The lowest profitable clustered objects are purged from cloud 
cache. Based on the trace-driven simulation results, the distributed sharing of big data was most efficient when employing i- 
Cloud. Although Cloud has been trained based on a uniform cost model, it performed well against a non-uniform cost 
environment or multi-provider hybrid cloud. 

 

6. FUTURE WORK 
According to this paper, we can work on many different things that will give us more options to increase the usability of cloud 
storage for big data. Some of the future works that can be further proceeded are 

• Compression of big data stored on the cloud. 

• Cost reduction methods. 

• Security of the data stored. 

• Encryption and Decryption of data. 

These were the future works that can be opted to work upon in near future. 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 4, 2022 | Page No. 26



 

 

7. REFERENCES 
[1] Amazon.com, Inc. (8 August 2013) Amazon simple storage service. [Online]. Available: http://aws.amazon.com/s3/pricing/ 

[2] Google Inc. (8 August 2013) Google cloud storage. [Online]. Available: https://cloud.google.com/pricing/cloud-storage/ 

[3] Microsoft. (8 August 2013) Windows Azure. [Online]. Available: http://www.windowsazure.com/ 

[4] S. Podlipnig and L. B¨osz¨ormenyi, “A survey of web cache replacement strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 

374–398, Dec. 2003. 

[5] J. Cobb and H. ElAarag, “Web proxy cache replacement scheme based on back-propagation neural network,” J. Syst. 
Softw., vol. 81, no. 9, pp. 1539–1558, Sep. 2008. 

[6] S. Romano and H. ElAarag, “A neural network proxy cache replacement strategy and its implementation in the squid 
proxy server,” Neural Comput. Appl., vol. 20, no. 1, pp. 59–78, Feb. 2011. 

[7] W. Ali and S. M. Shamsuddin, “Intelligent client-side web caching scheme based on least recently used an algorithm and 
neuro-fuzzy system,” in Proceedings of the 6th International Symposium on Neural Networks, 2009. 

[8] S. Sulaiman, S. Shamsuddin, F. Forkan, and A. Abraham, “Intelligent web caching using neuro-computing and particle 
swarm optimization algorithm,” in Modeling Simulation, 2008. Second Asia International Conference on, 2008, pp. 642–647. 

[9] W. Tian, B. Choi, and V. V. Phoha, “An adaptive web cache access predictor using the neural network,” in Proceedings of the 

15th intl. conf. on Industrial and engineering applications of artificial intelligence and expert systems, 2002. 

[10] T. Banditwattanawong, “From web cache to cloud cache,” in Advances in Grid and Pervasive Computing, ser. Lecture Notes 
in Computer Science, R. Li, J. Cao, and J. Bourgeois, Eds. Springer Berlin / Heidelberg, 2012, vol. 7296, pp. 1–15. 

[11] T. Banditwattanawong and P. Uthayopas, “An intelligent cloud cache replacement scheme,” in Advances in 
Information Tech-nology, 2013. IAIT 2013. 6th International Conference on, 2013. 

[12] “Cloud cache replacement policy: new performances and findings,” in Annual PSU Phuket, 2012. PSU PIC 2012. 1st 
Interna-tional Conference on, 2013. 

[13] “Improving cloud scalability, economy and responsiveness with client-side cloud cache,” in Electrical Engineering/Electronics, 

Computer, Telecommunications and Information Technology, 2013. ECTICON 2013. 10th International Conference on, 2013. 

[14] National Laboratory for Applied Network Research. (2012) Weekly squid http access logs. [Online]. 
Available: http://www.ircache.net/ 

[15] T. Banditwattanawong, S. Hidaka, H. Washizaki, and K. Maruyama, “Optimization of program loading by object 
class cluster-ing,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 1, no. 4, pp. 397–407, 2006. 

[16] D. Wessels, Squid: the definitive guide. O Reilly, 2004. 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 4, 2022 | Page No. 27

http://aws.amazon.com/s3/pricing/
https://cloud.google.com/pricing/cloud-storage/
http://www.windowsazure.com/
http://www.ircache.net/


 

 

2 

Σ 

. 

. . 

→ ∞ 

. 

. . . 

 

 

 

 

 

 

 

 
 

THE SECOND HANKEL DETERMINANT FOR A CLASS OF 
λ-q-SPIRALLIKE FUNCTIONS 

 
READ. S. A. QAHTAN1, HAMID SHAMSAN2, S. LATHA3 

 

1,2,3Department of Mathematics, Yuvaraja’s College, University of Mysore, Mysore 570005, 
INDIA 

 

 
Abstract. The object of the present paper is to obtain an upper bounded to the second Hankel 

determinant |a2a4 − a3| for λ-q- spirallike function of f  . 

Keywords: Analytic function, λ-q-spirallike functions, Upper bound, Second Han- 
kel determinant. 

 

AMS Subject Classification: 30C45 
 
 
 

1. INTRODUCTION 

Let A denote the class of functions of form 
∞ 

f (z) = z + an zn, (1) 
n=2 

defined  on  the  unit  disk  E  =  {z  :  z  ∈ C  and  |z| <  1} normalized  by  f (0)  =  0, 
f J(0) = 1. Let S  denote the subclass of function in A which are univalent in E.  The 
Hankel determinants of f for q ≥ 1 and n ≥ 1 was defined by Pommerenke [22], as 

 

an an+1 ... an+q−1 

 
 

H (n) := . an+1 an+2 ... an+q . 

q . . . 
. . an+q−1 an+q ...  an+2q−2 

where (n = 1, 2, ... and q = 1, 2, ..., ). This determinant has been considered by 
several authors in the literature. 
For example, Noonan and Thomas[34] studied about the second Hankel determinant 
of a really mean p-valent functions. Noor [21], determined the rate of growth of 
Hq(n) as n for the functions in S with a bounded boundary. Ehrenborg [13], 
studied the Hankel determinant of exponential polynomials. 
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f (z) 

q 

∈ P 

z(1−q) 

f J(0), z = 0. 

Definition 1.3. A function f ∈ A is said to be convex λ-q-spiral, where
  
−π  ≤ λ ≤ π 

   
, 

1 2 3 n 

1 1 

1 1 1 1 

n=1 
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Definition 1.1. [11] The q-analogue of f is given by 

(
f (z)−f (qz) , z /= 0, 

 
 

Equivalently (2), may be written as 
∞ 

∂qf (z) = 1 + [n]qanzn−1, z 0 
n=2 

where  

[n]q = 

 
1−qn , q 1 
1−q 

n, q= 1 

Note that as q → 1, [n]q → n. 

 
Definition  1.2.  A  function  f  ∈ A  is  said  to  be  λ-q-spiral  starlike  (|λ| ≤ π ),  if  and 
only if 

঩

 

eiλ 
z∂qf (z)

   

≥ 0, z ∈ E. (3) 
 

The class of λ-spiral starlike functions defined and studied by Spacek [] is denoted 
by SPST (λ). In this paper we study the class of λ-q-spiral starlike functions and 
denoted by SPST (λ, q). It is observed when λ = 0, SPST (0, q) = STq. 

 

if it satisfies the condition 
2 2 

 
 

z∂2f (z)
  

 
 

 e 
∂qf (z) 

≥ 0, z ∈ E. (4) 

The class of convex λ-spiral functions defined by Robertson (according to Good- 
man[]) is denoted by CV SP (λ). In this paper we study the class of convex λ-q-spiral 
functions and denoted by CV SP (λ, q). It is observed when λ = 0, CV SP (0, q) = 
CVq. 
Let P denote the class of functions 

p(z) = 1 + c  z + c  z2 + c  z3 + ... = 

(

1 + 
Σ∞   

c  zn

) 

, ∀z ∈ E. (5) 

Lemma 1.1. [4] If the function p is given by the series (5) then the following 
sharp estimate holds: 

|cn| ≤ 2 (n = 1, 2, ...). 

Lemma 1.2. [8] If the function p ∈ P is given by the series (5), then 

2c2 = c2 + x(4 − c2), (6) 

4c3 = c3 + 2(4 − c2)c1x − c1(4 − c2)x2 + 2(4 − c2)(1 − |x|2)z, (7) 

for  some  x, z  with  |x| ≤ 1  and  |z| ≤ 1. 

( 

∂qf (z) = , where(0 < q < 1) (2) 

iλ ঩ 
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1 

3 

— − 

. 

1 

eiλ  

  
z∂qf (z)

   

= p(z) ⇒
 

eiλz∂ f (z) − i sin λf (z)
} 

(8) 

, a3 = 
— 1 ([3] 

([2]q − 1)c2 + c1e cos λ 

e−iλ 

|a2a4 − a3| = . ([2]
 
— 1)2  

× 
([4] — 1) 

{([3]q − 1)([2]q − 1)c3 + F } cos λ 

n 

n 

 
 

Theorem  1.1.  If  f (z) = z + 
Σ∞

n=2 

 
3 

 

∈ SP ST (λ, q), (|λ| <  3 )  then 

2 4 cos2 λ |a2a4 − a3| ≤ 
([3]q 

— 1)2 
.
 

Proof.  Since  f (z)  =  z  + ∞
n=2   ∈ SP ST (λ, q),  from  (1),  there  exists  an  analytic 

function p ∈ P in the unit disc E with p(0) = 1 and ঩ {p(z)} > 0 such that 
 
 

f (z) 
q 

 

= cos λ {f (z) × p(z)} . 

Replacing f (z), ∂qf (z) and p(z) with their equivalent series expressions in (8), we 
have 

eiλ 1 +  
∞

 

n=2 

 
[n]q a  zn−1 − i sin λ z +  

∞

 

n=2 
an  z

n

)# 

= cos λ z +  
∞

 

n=2 

 
a   zn × 1 + 

∞

 

n=2 

 
cn zn

)# 

. 

Upon simplification, we obtain 

eiλ   ([2]q − 1)a2z + ([3]q − 1)a3z2 + ([4]q − 1)a4z3 + ... (9) 

= cos λ c1z + (c2 + c1a2)z2 + (c3 + c2a2 + c1a3)z3 + ...  . 

Equating the coefficients of like powers of z, z2 and z3 respectively in (9), we have 
([2]q − 1)a2eiλ = c1 cos λ, 

([4]q 1)a4eiλ = (c3 + c2a2 + c1a3) cos λ 
After simplifying, we get 

([3]q − 1)a3eiλ = (c2 + c1a2) cos λ, 
. 

e−iλc1 cos λ 
 

 

 

 

  1    
 

 
 
 

 

2  −iλ 
} 

a4 = 
([4] — 1)([3]q — 1)([2]q 1) 

{([3]q − 1)([2]q − 1)c3 + F } cos λ   , 

(10) 
 

where F = (([3]q 1) + ([2]q 1)) c1c2e−iλ cos λ + c3e−2iλ cos2 λ. 
Substituting the values of a2, a3, and a4 from(10) in the second Hankel functional 
|a2a4 − a2| for the function f ∈ SPST (λ, q), we have 

 

2 e−iλc1 cos λ 
 

 

e−iλ 
 

 

 

   

−
([3]q 

e−2iλ 

— 1)2([2]q 
 

 

— 1)2 
([2]q − 1)c2 + c2e −iλ cos λ

}2
 cos2 λ. , 

where F = (([3]q − 1) + ([2]q − 1)) c1c2e−iλ cos λ + c3e−2iλ cos2 λ. 1 

q q q 

— 1) q — 1)([2] q [2]q 

− 

a2 = cos λ, 

— 1)([3] 

q 
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≤

  − − − − −  − − − − 
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1 

∈ ≥ − − ≥ 
— − − − − − − 

1 
.
              }

≤

  − − − − −  − − − − 

1 

∈ | | 
— − − − − − − − 

.
 

− − − −
 

− − − − −
 }

 

— − − 
  

− − − − − 
  

− 

≤ .
 

− − − −
 

− − − − −
 }

 

— − − 
  

− − − − − 
  

− 
       

.
 

|a2a4 − a3| ≤ ([4]
 ([3]q − 1) ([2]q − 1)c1c3 − R 

. 
2 1 3 

2 

2 2 2 

1 

2 2 

4 .([3]q − 1)2([2]q − 1)c1c3 − ([4]q − 1)([2]q − 1)2c2 − (([4]q − 1) − ([3]q − 1)) c4 cos2 λ. 

+2([2]q − 1)([3]q − 1)2c1(4 − c2) + 2 
 

([2]q − 1)([3]q − 1)2 − ([4]q − 1)([2]q − 1)2
  

c2(4 − c2)|x| 

2 1 

+2([2]q − 1)([3]q − 1)2c1(4 − c2) + 2 
 

([2]q − 1)([3]q − 1)2 − ([4]q − 1)([2]q − 1)2
  

c2(4 − c2)|x| 

4 .([3]q − 1)2([2]q − 1)c1c3 − ([4]q − 1)([2]q − 1)2c2 − (([4]q − 1) − ([3]q − 1)) c4 cos2 λ. 

. 

2 1 

2 1 

([2]q 1)([3]q 1)2 ([2]q 1)2([4]q 1) 4 (([4]q 1) ([3]q 1)) cos2 λ c4 

([2]q 1)([3]q 1)2 ([2]q 1)2([4]q 1) 4 (([4]q 1) ([3]q 1)) cos2 λ c4 

2 1 

(14) 

 
 
 

4 READ. S. A. QAHTAN1, HAMID SHAMSAN2, S.LATHA3 
 

Using  the  facts  |xa + yb| ≤ |x||a| + |y||b|,  where  x, y, a  and  b  are  real  numbers  and 
|e−inλ| = 1, where n is a real number, upon simplification, we obtain 

2 cos2 λ 2 
 

 
 
  

 
 

where R = ([4]q − 1)([2]q − 1)2c2 − (([4]q − 1) − ([3]q − 1)) c4 cos2 λ. 
Substituting the values of c2 and c3 from (6) and(7) respectively from Lemma 1.2 
on the right-hand side of (11), we have 
.([3]q − 1)2([2]q − 1)c1c3 − ([4]q − 1)([2]q − 1)2c2 − (([4]q − 1) − ([3]q − 1)) c4 cos2 λ. 

 

= .([2]q − 1)([3]q − 1)  c1 × 
4 

c1  + 2c1(4 − c1)x − c1(4 − c1)x   + 2(4 − c1)(1 − |x| )z 

1 2  
      

2 2 
}2 4 2     . 

− 
4 

× ([4]q − 1)([2]q − 1) c1 + x(4 − c1) — (([4]q − 1) − ([3]q − 1)) c1 cos λ . 

Us.ing the fact |z| < 1, upon simplification, we obtain . 
 

 

1 1 1 

—  ([2]q − 1)([3]q − 1)2 − ([4]q − 1)([2]q − 1)2   c1 + 2([2]q − 1)2   H|x|2    , 

where H = [(([2]q 1)([3]q 1)2 ([4]q 1)([2]q 1)2) c1 + 2([4]q 1)] (4 c2). 
Since c1 [0, 2], using the result (c1 + a)(c1 + b) (c1 a)(c1 b), where a, b 0 
on the right-hand side of the above inequality, we get 
4 .([3]q − 1)2([2]q − 1)c1c3 − ([4]q − 1)([2]q − 1)2c2 − (([4]q − 1) − ([3]q − 1)) c4 cos2 λ. 

 

 
 

 

— 
  

([2]q − 1)([3]q − 1)2 − ([4]q − 1)([2]q − 1)2
  

c1 − 2([2]q − 1)2
  

M |x|2. , 

1 1 
 
 

(12) 
where M = [(([2]q 1)([3]q 1)2 ([4]q 1)([2]q 1)2) c1 2([4]q 1)] (4 c2). 
Choosing c1 = c [0, 2], applying triangle inequality replacing x by µ on the right- 
hand side of (12) we obtain 

 

4 (([4]q 1) ([3]q 1)) cos2 λ ([2]q 1)([3]q 1)2 ([2]q 1)2([4]q 1) c4 

+2([2]q 1)([3]q 1)2c(4 c2) + 2  ([2]q 1)([3]q 1)2 ([4]q 1)([2]q 1)2  c2(4 c2)µ 

+ ([2]q − 1)([3]q − 1)2 − ([4]q − 1)([2]q − 1)2 c − 2([2]q − 1)2 Nµ2 , 

= F (c, µ), with 0 ≤ µ = |x| ≤ 1. (13) 

where N = [(([2]q − 1)([3]q − 1)2 − ([4]q − 1)([2]q − 1)2) c − 2([4]q − 1)] (4 − c2). 

F (c, µ) = 4 (([4]q 1) ([3]q 1)) cos2 λ ([2]q 1)([3]q 1)2 ([2]q 1)2([4]q 1) c4 

+2([2]q 1)([3]q 1)2c(4 c2) + 2  ([2]q 1)([3]q 1)2 ([4]q 1)([2]q 1)2  c2(4 c2)µ 

+
  

([2]q − 1)([3]q − 1)2 − ([4]q − 1)([2]q − 1)2
 

c − 2([2]q − 1)2
 

Nµ2. , 

1 

— 1)2 q — 1)2([2] q — 1)([3] q 
, (11) 

} 

. 
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× 

2 

— − − − − − − 

∂µ 

(17) 

(18) 

                 }}
−

 − − −  − − − − − 

    
−

 −
 

    

— − 

Σ 
π 

3 3 

.([3]q − 1)2([2]q − 1)c1c3 − ([4]q − 1)([2]q − 1)2c2 − (([4]q − 1) − ([3]q − 1)) c4 cos2 λ. 

     

(15) 

 
 
 

5 
 

where N = [(([2]q − 1)([3]q − 1)2 − ([4]q − 1)([2]q − 1)2) c − 2([4]q − 1)] (4 − c2). 
Now the function F (c, µ) is maximized on the closed square [0, 2] [0, 1]. Differen- 
tiating F (c, µ) in (14) partially with respect to µ, we get 
∂F 

=  2  ([2] 
∂µ q 

2
     

2 
— 1)([3]q − 1) − ([4]q − 1)([2]q − 1) c 

+2µ
  

([2]q − 1)([3]q − 1)2 − ([4]q − 1)([2]q − 1)2
 

c − 2([2]q − 1)2
} 

L
 

× (4 − c2), 

where L = [(([2]q 1)([3]q 1)2 ([4]q 1)([2]q 1)2) c 2([4]q 1)] . 
For 0 < µ < 1, for fixed c, q with 0 < c < 2 and 0 < q < 1, from (15), we observe 
that ∂F > 0. Consequently, F (c, µ) is an increasing function of µ and hence cannot 
have maximum value at any point in the interior of the closed square [0, 2] × [0, 1]. 
Moreover, for fixed c ∈ [0, 2], we have 

max F (c, µ) = F (c, 1) = G(c). (16) 
0≤µ≤1 

Upon simplifying the relations(14) and(16) we obtain 

G(c) =  4   (([4]q 1) ([3]q 1)) cos2 λ ([2]q 1)([3]q 1)2 ([2]q 1)2([4]q 1) c4 

+16
 

([2]q − 1)2([4]q − 1)
  

, GJ(c) 

=
 
4[4]q

 
(([4]q − 1) − ([3]q − 1)) cos2 λ −

 
([2]q − 1)([3]q − 1)2 − ([2]q − 1)2([4]q − 1)

 }} 
c3
 
 

From the expression(18), we observe that GJ(c) ≤ 0 for all v alues of c in the interval 

   monotonically decreasing function of c in the interval [0, 2] so that its maximum 
value occurs at c = 0. From(17), we get 

max G(0) = 16  ([2]q 1)2([4]q 1) (19) 
0≤c≤2 

After simplifying the expression (13) and (19), we obtain 
 

2 
 
 

 

Upon simplifying the expressions(11) and(20), we get 

1 

≤ 4 ([2]q − 1)2([4]q − 1) . 
(20) 

2 4 cos2 λ |a2a4 − a3| ≤ 
([3]q 

— 1)2 . (21) 

Choosing c1 = c = 0 and selecting x =  1 in (6) and (7), we find that c2 =  2 and 
c3 = 0. Substituting these value in (20), it is observed that equality is attained which 
shows that our result is sharp. This completes the proof of our Theorem 1.1. Q 

As q → 1−1 in the above Theorem we obtain the following: 

Corollary  1.1.  [17]  If  f (z) = z + ∞
n=2 

2 

∈ SP ST (λ), (|λ| <  3 )  then 
2 

|a2a4 − a3| ≤ cos λ. 

Remark 1.1. If we choose λ = 0, from(20), we get |a2a4 − a2| ≤ 4 . 
3 ([3]q−1)2 

. Therefore,  G(c) is a −π ≤ λ ≤ π 0 ≤ c ≤ 2 and for a fixed value of λ with 
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∈ P 
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q 

) (
Σ
 

( 
Σ
 ) ( 

Σ
 

1 

3 | − | ∈ 

eiλ 
  

[2]qa2z + [3]q[2]qa3z2 + [4]q[3]qa4z3 + ...
   

= cos λ 
  

c1z + (c2 + [2]qc1a2)z2 

3 q 2 2 q 1 3 

a4 = 
[4] [3] [2] 

cos λ + c1e 
cos 

λ 

|a2a4 − a3| ≤ [4] [3]2[2]2 
×
 [3]q[2]qc1c3 + ([3]q([2]q + 1) − 2[4]q) c1c2 cos λ 

n 

n n 

. 

q q q q q q q 

(25) 

2 1 

 
 
 

6 READ. S. A. QAHTAN1, HAMID SHAMSAN2, S.LATHA3 
 

As q → 1−1 in the above Remark we obtain the following: 

Remark 1.2. [17] If we choose λ = 0, from(20), we get |a2a4 − a2| ≤ 1. 

This inequality is sharp and coincides with that of Janteng, Halim and Darus [12]. 

Theorem  1.2.  If  f (z) ∈ CV SP (λ, q) 
 
|λ| ≤ π 

  
then 

2 {((3[3]q[2]q − 4[4]q)2 + 8[4]q([3]q[2]q − [4]q)) + T } + L
 
 

 |a2a4 − a3| ≤ 2[4] [3]2[2]2 (2([4] — [3] ) + ([3] [2] — [4] ) sec2 λ) 
(22) 

where T = 4([3]q([2]q + 1) − 2[4]q)2 + 16[4]q([4]q − [3]q) cos2 λ 
L = 4 ((3[3]q[2]q − 4[4]q)([3]q([2]q + 1) − 2[4]q)) cos λ 

Proof.  Since  f (z) = z +      ∞n=2    an  zn      CV SP (λ, q),  from  the  Definition  1.3,  there 
exists an analytic function p in the unit disc E with p(0) = 1 and Re p(z) > 0 
such that 

eiλ 

 

1 + z∂2f (z)
  

 
 

 

= p(z) ⇔ e ∂ f (z) + z∂ f (z)
} 
− i sin λ∂ f (z) 

iλ 2 (23) 
∂qf (z) 

q q q 

= cos λ {∂qf (z) × p(z)} . 

Replacing ∂qf (z), z∂2f (z) and p(z) with their equivalent series expressions in the 
relation (23), we have 

" 

eiλ 

(

1 + 
Σ∞

 

[n]q a   zn−1 + z 

∞

 

n=2 

[n]q[n − 1]q an   z
n−2

)!

 

−i sin λ    1 +  

∞

 

n=2 

[n]q a    zn−1

)# 

= 

"

cos λ 

(

1 + 
Σ∞

 [n]q a   zn−1 × 1 + 

∞

 

n=1 

cn zn

)# 

. 

Upon simplification, we obtain 

+(c + [2] c a  + [3] c a )z3 + ...
  

.  
(24)

 

On equating the coefficients of like powers of z, z2 and z3 respectively in (24), after 
simplifying, we get 

a2 = 
e−iλ 

[2] 
e−iλ 

c1 cos λ, a3 = 
[3] [2]

 c2 + c2e −iλ cos λ
}
 cos λ 

q 

e−iλ 
 

 

 

   

q q 
 

−iλ 3   −2iλ 2     
} 

 

Substituting the values of a2, a3 and a4 from (25) in the second Hankel functional 
a2a4 a2 for the function f (z) CV SP (λ, q), applying the same procedure as 
described in Theorem 1.1, upon simplification, we obtain 

2 cos2 λ 2 
 

 

 
q q q 

−[4]qc2 − ([4]q − [3]q)c4 cos2 λ. . (26) 

q q q 

n=2 

n=2 

[2]qc3 + ([2]q + 1) c1c2e 
cos λ . 
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1 
.
 } 

.− (([3]  [2]   − [4]  )c   + 4) (c   + [4]  )(4 − c  )|x|  .q
 q q 1 1 q 

| | 
∈ ≥ − − ≥ 

. 

.
 } 

.
 } 

.− − − − 

2 

2 

∂µ 

       
− 

 − −
 

      

1 2 1 

1 2 1 

2 

(30) 
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Applying the same procedure as described in Theorem 1.1, after simplification, we 
get 

 

4 .[3]q[2]qc1c3 + ([3]q([2]q + 1) − 2[4]q) c2c2 cos λ − [4]qc2 − ([4]q − [3]q)c4 cos2 λ. 
 

≤ [3]q[2]q − [4]q + 2 ([3]q([2]q + 1) − 2[4]q) cos λ − 4([4]q − [3]q) cos2 λ c4 
+2[3]q[2]qc1(4 − c2) + {2([3]q[2]q − [4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ} c2(4 − c2)|x| 

1 1 1 

2 2 
1 

Choosing c1 = c  [0, 2], using the result (c+a)(c+b)  (c  a)(c  b), where a, b   o, 
applying triangle inequality an replacing x  by µ and Applying the same procedure 
as described in Theorem 1.1 on the right-hand side of the above inequality, we obtain 

 

4 .[3]q[2]qc1c3 + ([3]q([2]q + 1) − 2[4]q) c2c2 cos λ − [4]qc2 − ([4]q − [3]q)c4 cos2 λ. 
 

 

 
 

 
 

Where 

≤ [3]q[2]q − [4]q + 2 ([3]q([2]q + 1) − 2[4]q) cos λ − 4([4]q − [3]q) cos2 λ c4 

+2[3]q[2]qc(4 − c2) + {2([3]q[2]q − [4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ} c2(4 − c2)µ 

+ (([3]q[2]q − [4]q)c − 4) (c − [4]q)(4 − c2)µ2 . 

= F (c, µ), with 0 ≤ µ = |x| ≤ 1. (27) 

F (c, µ) = [3]q[2]q − [4]q + 2 ([3]q([2]q + 1) − 2[4]q) cos λ − 4([4]q − [3]q) cos2 λ c4 

+2[3]q[2]qc(4 − c2) + {2([3]q[2]q − [4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ} c2(4 − c2)µ 

+ (([3]q[2]q [4]q)c 4) (c [4]q)(4 c2)µ2 . 
Applying the same procedure as described in Theorem1.1, we get 
∂F 

= 
 
(2([3] [2] — [4] ) + 2([3] [2] — 2[4] ) cos λ) c + 2µ (([3] [2] — [4] )c − 4) (c − [4] )

 
 

 
∂µ q q q 

q q q q q q 
q 

×(4 − c ). 
(28) From  (28),  for  0  <  µ <  1,  c  with  0  <  c  <  2  and  0  <  q  <  1  for  a  fixed  λ(|λ| ≤ π ), 

we observe that ∂F   > 0. Consequently, F (c, µ) is an increasing function of µ and 
hence cannot have a maximum value at any point in the interior of the closed square 
[0, 2] × [0, 1]. Further, for fixed c ∈ [0, 2], we have 

max F (c, µ) = F (c, 1) = G(c). (29) 
0≤µ≤1 

In view of the expression(29), replacing µ by 1 in (27), upon simplification, we obtain 

G(c) = 2 ([3]q[2]q [4]q) + 2([4]q [3]q) cos2 λ c4 

+4 ((3[3]q[2]q − 4[4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ) c2 + 16[4]q

}
 

GJ(c) = −8 ([3]q[2]q − [4]q) + 2([4]q − [3]q) cos2 λ c3 

+8 ((3[3]q[2]q − 4[4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ) c} 
(31) 
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 }
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{((3[3]q[2]q − 4[4]q)2 + 8[4]q([3]q[2]q − [4]q)) + T } + L

 
 

.[3]q[2]qc1c3 + ([3]q([2]q + 1) − 2[4]q) c2c2 cos λ − [4]qc2 − ([4]q − [3]q)c4 cos2 λ. ≤ M 
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GJJ(c) = −24 ([3]q[2]q − [4]q) + 2([4]q − [3]q) cos2 λ c2 

+8 ((3[3]q[2]q − 4[4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ)} 
(32) 

To obtain optimum value of G(c), consider GJ(c) = 0. From(31), we get 

−8c ([3]q[2]q − [4]q) + 2([4]q − [3]q) cos2 λ c2 

— ((3[3]q[2]q − 4[4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ)} = 0 
(33) 

Let us discuss the following cases: 
Case 1 :If c = 0, then from (32) we obtain 

π 
8 ((3[3]q[2]q − 4[4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ) > 0,  for|λ| ≤ 

2
 

 

Therefore, by the second derivative test, G(c) has minimum value at c = 0. 
case 2 : If c 0, then from (33) we get 

c2  = 
((3[3]q[2]q − 4[4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ) 

, (34) 
(([3]q[2]q − [4]q) + 2([4]q − [3]q) cos2 λ) 

Using the value of c2 in (32), after simplifying, we get 

GJJ(c) = −16 {((3[3]q[2]q − 4[4]q) + 2([3]q([2]q + 1) − 2[4]q) cos λ)} (35) 

by the second derivative test, G(c) has maximum value at c, where c2 is given in 
(34). using the value of c2 in (30), upon simplification, we obtain 

 

max G(c) = 2 
0≤c≤2 (([3]q[2]q − [4]q) + 2([4]q − [3]q) cos2 λ) 

(36) 

where T = 4([3]q([2]q + 1) 2[4]q)2 + 16[4]q([4]q [3]q) cos2 λ 
L = 4 ((3[3]q[2]q 4[4]q)([3]q([2]q + 1) 2[4]q)) cos λ 
Considering, the maximum value of G(c) at c, where c2 is given in (34), from(27) 
and(36), after simplifying, we get 

 

 

 
where M = 

1 2 

 

((3[3]q [2]q−4[4]q )2+8[4]q ([3]q [2]q−[4]q ))+T   +L 

2(([3]q [2]q−[4]q )+2([4]q−[3]q ) cos2 λ) 

1 

(37) 

and T = 4([3]q([2]q + 1) 2[4]q)2 + 16[4]q([4]q [3]q) cos2 λ 
L = 4 ((3[3]q[2]q 4[4]q)([3]q([2]q + 1) 2[4]q)) cos λ 
From the expressions(26) and (37), upon simplification, we obtain 

2 {((3[3]q[2]q − 4[4]q)2 + 8[4]q([3]q[2]q − [4]q)) + T } + L
 
 

 |a2a4 − a3| ≤ 2[4] [3]2[2]2 (2([4] — [3] ) + ([3] [2] — [4] ) sec2 λ) 
(38) 

where T = 4([3]q([2]q + 1) 2[4]q)2 + 16[4]q([4]q [3]q) cos2 λ 
L = 4 ((3[3]q[2]q 4[4]q)([3]q([2]q + 1) 2[4]q)) cos λ 

This completes the proof of our Theorem. Q 

As q → 1−1 in the above Theorem we obtain the following: 
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Corollary  1.2.  [17]If  f (z) ∈ CV SP (λ) 
 
|λ| ≤ π 

  
then 

 

|a2a4 − a3| ≤ 
17(1 + cos2 λ) + 2 cos λ 

144(1 + sec2 λ) 

Remark 1.3. If we choose λ = 0, from(38), we get 

2 {((3[3]q[2]q − 4[4]q)2 + 8[4]q([3]q[2]q − [4]q)) + A} + B 
 
 

 |a2a4 − a3| ≤ 2[4] [3]2[2]2 (2([4] — [3] ) + ([3] [2] 

, — [4] )) where A = 4([3]q([2]q + 1) − 2[4]q)2 + 16[4]q([4]q − [3]q) 
B = 4 ((3[3]q[2]q − 4[4]q)([3]q([2]q + 1) − 2[4]q)) 

 
As q → 1−1 in the above Remark we obtain the following: 

Remark 1.4. [17] If we choose λ = 0, from(38), we get |a2a4 − a2| ≤ 1 . 

This inequality is sharp and coincides with that of Janteng, Halim and Darus [] 
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