

Deep Machine Learning in Gamesin Artificial

Intelligence

S.Saravanan1, Vishal Gupta2, Aakash K Singh3, Asraar Contractor4

CSE,CSE,CSE,CSE,VTU,VTU,VTU,VTU

RRIT,Bangalore,RRIT,Bangalore,RRIT,Bangalore,RRIT,Bangalore
1drsaranphd@gmail.com,2vishuplk66@gmail.com, 3aakash.singh.as130@gmail.com,

4asraar91@gmail.com

Abstract— This paper provides a survey of previously

published work on machine learning in game playing. The

material is organized around a variety of problems that typically

arise in game playing and that can be solved with machine

learning methods. This approach, we believe, allows both,

researchers in game playing to find appropriate learning

techniques for helping to solve their problems as well as machine

learning researchers to identify rewarding topics for further

research in game-playing domains. The paper covers learning

techniques that range from neural networks to decision tree

learning in games that range from poker to chess. However,

space constraints prevent us from giving detailed introductions

to the used learning techniques or games. Overall, we aimed at

striking a fair balance between being exhaustive and being

exhausting.

Keywords— machine learning, game paying, decision tree,

neural networks, space constraints

I. INTRODUCTION

In this paper, we will attempt to survey the large amount

of literature that deals withmachine-learning approaches to

game playing. Unfortunately, space and time do notpermit

us to provide introductory knowledge in either machine

learning or game playing. The main goal of this paper is to

enablethe interested reader to quickly find previous results

that are relevant for her researchproject, so that she may

start her investigations from there.

There are several possibleways for organizing the material

in this paper. We could,for example, have grouped it by the

different games (chess, Go, backgammon, shogi,Othello,

bridge, poker to name a few more popular ones) or by the

learning techniquesused (as we have previously done for the

domain of chess (Furnkranz 1996)). Instead,we decided to

take a problem-oriented approach and grouped them by the

challengesthat are posed in different aspects of the game.

This, we believe, allows both, researchersin game playing to

find appropriate learning techniques for helping to solvetheir

problems as well as machine learning researchers to identify

rewarding topics forfurther research in game-playing

domains.

We will start with a discussion of book learning, i.e., for

techniques that store precalculatedmoves in a so-called book

for rapid access in tournament play.

Next, we will address the problem of using learning

techniques for controlling thesearch procedures that are

commonly used in game playing programs, we will review

the most popular learning task, namely the automatic

tuningof an evaluation function. We will consider

supervised learning, comparison training,reinforcement and

temporal-difference learning. In a separate subsection, we

will discussseveral important issues that are common to

these approaches. Thereafter, we will survey various

approaches for automatically discovering patterns and

plans,moving from simple advice-taking over cognitive

modeling approaches to the inductionof patterns and playing

strategies from game databases. Finally, wewill briefly

discuss opponent modeling, i.e., the task of improving the

program’s playby learning to exploit the weaknesses of

particular opponents.

II. LEARNING TO CHOOSE OPENING VARIATIONS

The idea of using opening books to improve machine-play

has been present since theearly days of computer game-

playing. Samuel (1959) already used an opening bookin his

checkers playing program, as did Greenblatt, Eastlake III, and

Crocker (1967) intheir chess program. Opening books, i.e.,

pre-computed to replies for a set of positions,can be easily

programmed and are a simple way for making human

knowledge, whichcan be found in game-playing books,

accessible to the machine. However, the questionwhich of the

many book moves a program should choose is far from

trivial.Hyatt (1999) tackles the problem of learning which

opening his chess programCRAFTY should play and which it

should avoid. He proposes a reinforcement learningtechnique

(cf. Section 4.3) to solve this problem, using the computer’s

position evaluation after leaving the book as an evaluation of

the playability of the chosen line. Inorder to avoid the

problem that some openings (gambits) are typically

underestimatedby programs, CRAFTY uses the maximum or

minimum (depending on the trend) of theevaluations of the

ten positions encountered immediately after leaving book.

A. Learning from mistakes

A straight-forward approach for learning to avoid to

repeat mistakes is to remembereach position in which the

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 6, 2022 | Page No. 15

mailto:vishuplk66@gmail.com
mailto:3aakash.singh.as130@gmail.com
mailto:asraar91@gmail.com

program made a mistake so that it is alert when this positionis

encountered the next time. The game-playing system HOYLE

(Epstein 2001)implements such an approach. After each

decisive game, HOYLE looks for the lastposition in which

the loser could have made an alternative move and tries to

determinethe value of this position through exhaustive search.

If the search succeeds, the stateis marked as ―significant‖ and

the optimal move is recorded for future encounters withthis

position. If the search does not succeed (and hence the

optimal move could not bedetermined), the state is marked as

―dangerous‖. More details on this technique can befound in

(Epstein 2001).

In conventional, search-based game-playing

programs such techniques can easilybe implemented via their

transposition tables (Greenblatt et al. 1967; Slate and

Atkin1983). Originally, transposition tables were only used

locally with the aim of avoidingrepetitive search efforts (e.g.,

by avoiding to repeatedly search for the evaluation of

aposition that can be reached with different move orders).

However, the potential ofusing global transposition tables,

which are initialized with a set of permanently storedpositions,

to improve play over a series of games was soon recognized.

Once more, it was Samuel (1959) who made the first

contribution in this direction.His checkers player featured a

rote learning procedure that simply stored every

positionencountered together with its evaluation so that it

could be reused in subsequentsearches. With such techniques,

deeper searches are possible because on the one handthe

program is able to save valuable time because positions

encountered in memorydo not have to be re-searched. On the

other hand, if the search encounters a stored. Actually, Buro

suggests to discern between public draws and private draws.

The latter—being a resultof the program’s own analysis or

experience and thus, with some chance, not part of the

opponent’s bookknowledge—could be tried in the hope that

the opponents makes a mistake, while the former may lead

toboring draws when both programs play their bookmoves (as

is known from many chess grandmaster draws).

A very similar technique was used in the BEBE

chessprogram, where the transposition table was initialized

with positions from previousgames. It has been

experimentally confirmed that this simple technique learning

infact improves its score considerably when playing 100-200

games against the sameopponent (Scherzer et al. 1990).In

game like chess, such rote learning techniques help in

opening or endgame play.

In complicated middlegamepositions,where most pieces are

still on the board, chancesare considerably lower that the

same position will be encountered in another game.

Thus, in order to avoid an explosion of memory

costs by saving unnecessary positions,Samuel (1959) also

devised a scheme for forgetting positions that are not or only

infrequentlyused. Other authors tried to cope with these

problems by being selective inwhich positions are added to

the table. For example, Hsu (1985) tried to identify thefaulty

moves in lost games by looking for positions in which the

value of the evaluationfunction suddenly drops. Positions

near that point were re-investigated with a deepersearch. If

the program detected that it had made a mistake, the position

and the correctmove were added to the program’s global

transposition table. If no single move couldbe blamed for the

loss, a re-investigation of the game moves with a deeper

search wasstarted with the first position that was searched

after leaving the opening book. Frey(1986) describes two

cases where an Othello program (Hsu 1985) successfully

learnedto avoid a previous mistake. Similar techniques were

refined later (Slate 1987) andwere incorporated into state-of-

the-art game playing programs, such as the chessprogram

CRAFTY (Hyatt 1999).

Baxter, Tridgell, and Weaver (1998b) also adopt this

technology but discuss someinconsistencies and propose a

few modifications to avoid them. In particular, theypropose to

insert not only the losing position but also its two successors.

Every time aposition is inserted, a consistency check is

performed to determinewhether the positionleads to another

book position with a contradictory evaluation, in which case

bothpositions are re-evaluated. This technique has the

advantage that only moves that havebeen evaluated by the

computer are entered into the book, so that it never

stumbles―blindly‖ into a bad book variation.

III. LEARNING FROM SIMULATION

The previous techniques were developed for deterministic,

perfect information gameswhere evaluating a position is

usually synonymous for searching all possible continuationsto

a fixed depth. Some of them may be hard to adapt for games

with imperfectinformation (e.g., card games like bridge) or a

random component (e.g., dice gameslike backgammon)

where deep searches are infeasible and techniques like storing

precomputedevaluations in a transposition table do not

necessarily lead to significantchanges in playing strengths. In

these cases, however, conventional search can bereplaced by

simulation search (Schaeffer 2000), a search technique which

evaluatespositions by playing a multitude of games with this

starting position against itself. Ineach of these games, the

indeterministic parameters are assigned different,

concretevalues (e.g., by different dice rolls or by dealing the

opponents a different set of cardsor tiles). Statistics are kept

over all these games which are then used for evaluating

thequality of the moves in the current state.

Tesauro (1995) notes that such roll-outs can produce quite

reliable comparisonsbetween moves, even if the used

program is not of master strength. In the case ofbackgammon,

such analyses have subsequently led to changes in opening

theory (Robertie1992, 1993). Similar techniques can be (and

indeed are) used for position evaluationin games like bridge

(Ginsberg 1999), Scrabble (Sheppard 1999), or poker

(Billingset al. 1999), and were even tried as an alternative for

conventional search in the gameof Go (Brugmann 1993). It

would also be interesting to explore the respective

advantagesof such Monte-Carlo search techniques and

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 6, 2022 | Page No. 16

reinforcement learning (see (Suttonand Barto 1998) for a

discussion of this issue in other domains).

A.Evaluation Function Tuning

The most extensively studied learning problem in

game playing is the automatic adjustmentof the weights of an

evaluation function. Typically, the situation is as follows:

the game programmer has provided the programwith a library

of routines that computeimportant properties of the current

board position (e.g., the number of pieces of each4Inductive

logic programming (ILP) refers to a family of learning

algorithms that are able to inducePROLOG programs and can

thus rely on a more expressive concept language than

conventional learningalgorithms, which operate in

propositional logic (Muggleton 1992; Lavraˇc and Dˇzeroski

1993; De Raedt1995; Muggleton and De Raedt 1994). Its

strengths become particularly important in domains where

astructural description of the training objects is of importance,

like, e.g., in describing molecular structures(Bratko and King

1994; Bratko and Muggleton 1995). They also seem to be

appropriate for many gameplaying domains, in which a

description of the spatial relation between the pieces is often

more importantthan their actual location.kind on the board,

the size of the territory controlled, etc.). What is not known is

howto combine these pieces of knowledge and how to

quantify their relative importance.

The known approaches to solving this problem can

be categorized along severaldimensions. In what follows, we

will discriminate them by the type of training informationthey

receive. In supervised learning the evaluation function is

trained on informationabout its correct values, i.e., the learner

receives examples of positions ormovesalong with their

correct evaluation values. In comparison training, it is

provided witha collection of move pairs and the information

which of the two is preferable. Alternativelyit is given a

collection of training positions and the moves that have been

playedin these positions. In reinforcement learning, the

learner does not receive any directinformation about the

absolute or relative value of the training positions or moves.

Instead,it receives feedback from the environment whether its

moves were good or bad.

In the simplest case, this feedback simply consists of the

information whether it haswon or lost the game. Temporal-

difference learning is a special case of reinforcementlearning

which can use evaluation function values of later positions to

reinforce or correctdecisions earlier in the game. This type of

algorithm, however, has become sofashionable for evaluation

function tuning that it deserves its own subsection. Finally,in

Section 4.5, we will discuss a few important issues for

evaluation function training.

B. Supervised learning

A straight-forward approach for learning theweights

of an evaluation function is to providethe program with

example positions for which the exact value of the

evaluationfunction is known. The program then tries to adjust

the weights in a way that minimizesthe error of the evaluation

function on these positions. The resulting function,learned by

linear optimization or some non-linear optimization technique

like backpropagationtraining for neural networks, can then be

used to evaluate new, previouslyunseen positions.

Mitchell (1984) applied such a technique to learning an

evaluation function for thegame of Othello (see also (Frey

1986)).

These values were then used for computing

appropriateweights of the 28 features of a linear evaluation

function by means of regression.In the game of Othello, Lee

and Mahajan (1988) relied on BILL, a—for the time—very

strong program5 that used hand-crafted features, to provide

training examplesby playing a series of games against itself.

Variety was ensured by playing the first20 plies randomly.

Each position was labeled as won or lost, depending on the

actualoutcome of the game, and represented with four

different numerical feature scores (Leeand Mahajan 1990).

The covariance matrix of these features was computed from

thetraining data and this information was used for learning

several Bayesian discriminantfunctions (one for each ply

from 24 to 49), which estimated the probability of winningin

a given position. The results showed a great performance

improvement over the5In 1997, BILL was tested against

Buro’s LOGISTELLO and appeared comparably weak:

running onequal hardware and using 20 minutes per game

BILL was roughly on par with 4-ply LOGISTELLO,

whichonly used a couple of seconds per game (Buro 2000,

personal communication).original program. A similar

procedure was used by Buro (1995b). He further

improvedclassification accuracy by building a complete

position tree of all games. Interior nodeswere labelled with

the results of a fast negamax search, which he also used for

hisapproach to opening book learning (see Section 2.2 and

(Buro 2001)).

Tesauro and Sejnowski (1989) trained the first

neural-network evaluation functionof the program that has

later developed into TD-GAMMON by providing it with

severalthousand expert-rated training positions.

In fact, overfittingthe training data did hurt the

performance on independent test data, a common

phenomenonin machine learning. Likewise, in (Dahl 2001), a

neural network is trainedto evaluate parts of Go positions, so-

called receptive fields. Its training input consistsof a number

of positive examples, receptive fields in which the expert

played into itscenter, and for each of them a negative example,

another receptive field from the sameposition, which was

chosen randomly from the legal moves that the expert did not

play.

IV. COMPARISON TRAINING

Tesauro (1989a) introduced a new framework for training

evaluation functions, whichhe called comparison training,

thelearner is not given exact evaluations for the

possiblemoves (or resulting positions) butis only informed

about their relative order. Typically, it receives examples in

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 6, 2022 | Page No. 17

the formof move pairs along with a training signal as to

which of the two moves is preferable.

However, the learner does not learn an explicit preference

relation between moves as in(Utgoff and Heitman 1988), but

tries to use this kind of training information for tuningthe

parameters of an evaluation function (Utgoff and Clouse

1991). Thus, the learnerreceives less training information

than in the supervised setting, but more informationthan in

the reinforcement learning setting.

A. Reinforcement learning

Reinforcement learning (Sutton and Barto 1998) is

best described by imagining anagent that is able to take

several actions whose task is to learn which actions aremost

preferable in which states. However, contrary to the

supervised learning setting,the agent does not receive training

information from a domain expert. Instead,it may explore the

different actions and, while doing so, will receive feedback

fromthe environment—the so-called reinforcement or

reward—which it can use to rate thesuccess of its own actions.

In a game-playing setting, the actions are typically the

legalmoves in the current state of the game, and the feedback

is whether the learner winsor loses the game or by which

margin it does so. We will describe this setting in more7A

genetic algorithm (Goldberg 1989) is a randomized search

algorithm. It maintains a population ofindividuals that are

typically encoded as strings of 0’s and 1’s. All individuals of

a so-called generationare evaluated according to their fitness,

and the fittest individuals have the highest chance of

surviving intothe next generation and of spawning new

individuals through the genetic operators cross-over and

mutation.

For more details, see also (Kojima and Yoshikawa

2001), which discusses the use of genetic algorithms

forlearning to solve tsume-go problems.detail using

MENACE, the Matchbox Educable Noughts And Crosses

Engine (Michie1961, 1963), which learned to play the game

of tic-tac-toe by reinforcement.

MENACE has one weight associated with each of the 287

different positions withthe first player to move (rotated

ormirrored variants of identical positionswere mappedto a

unique position). In each state, all possible actions (all yet

unoccupied squares)are assigned a weight. The next action is

selected at random, with probabilities correspondingto the

weights of the different choices. Depending on the outcome

of thegame, the moves played by the machine are rewarded or

penalized by increasing ordecreasing their weight. Drawing

the game was considered a success and was alsoreinforced

(albeit by a smaller amount).

However, the idea is that after many games, good

positions willhave received more positive than negative

reward and vice versa, so that the evaluationfunction

eventually converges to a reasonable value.

B. Linear vs. non-linear evaluation functions

Most conventional game-playing programs depend on fast

search algorithms and thusrequire an evaluation function that

can be quickly evaluated. A linear combination ofa few

features that characterize the current board situation is an

obvious choice here.

Manual tuning of the weights of a linear evaluation

function is comparably simple, butalready very cumbersome.

Not only the individual evaluation terms may depend oneach

other, so that small changes in oneweightmay affect the

correctness of the settingsof other weights, but also all

weights depend on the characteristics of the program inwhich

they are used. For example, the importance of being able to

recognize tacticalpatterns such as fork threats may decrease

with the program’s search depth or dependon the efficiency

of the program’s quiescence search.

However, advances in automated tuning techniques have even

made the use of nonlinearfunction approximators feasible.

Samuel (1967) already suggested the use ofsignature tables, a

non-linear, layered structure of look-up tables. Clearly,non-

lineartechniques have the advantage that they can

approximate a much larger class of functions.

C. Evaluation function learning and search

In backgammon, deep searches are practically

infeasible because of the large branchingfactor that is due to

the chance element introduced by the use of dice.

However,deep searches are also beyond the capabilities of

human players whose strength liesin estimating the positional

value of the current state of the board. Contrary to

thesuccessful chess programs, who can easily out-search their

human opponent but stilltrail her ability of estimating the

positional merits of the current board configuration,TD-

GAMMON was able to excel in backgammon for the same

reasons that humansplay well: its grasp of the positional

strengths and weaknesses was excellent.

However, in games like chess or checkers, deep

searches are necessary for expertperformance. A problem that

has to be solved for these games is how to integratelearning

into the search techniques. In particular in chess, one has the

problem that theposition at the root of the node often has

completely different characteristics than theevaluation of the

node. Consider the situation where one is in the middle of a

queentrade. The current board situation will evaluate as

―being one queen behind‖, while alittle bit of search will

show that the position is actually even because the queen

caneasily be recaptured within the next few moves. Straight-

forward application of anevaluation function tuning algorithm

would then simply try to adjust the evaluation ofthe current

position towards being even. Clearly, this is not the right

thing to do becausesimple tactical patterns like piece trades

are typically handled by the search and neednot be recognized

by the evaluation function.

The solution for this problem is to base the

evaluation on the dominant position ofthe search. The

dominant position is the leaf position in the search tree whose

evaluationhas been propagated back to the root of the search

tree. Most conventional searchbasedprograms employ some

form of quiescence search to ensure that this evaluationis

fairly stable. Using the dominant position instead of the root

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 6, 2022 | Page No. 18

positionmakes sure thatthe estimation of the weight

adjustments is based on the position that was responsiblefor

the evaluation of the current board position. Not surprisingly,

this problem has alreadybeen recognized and solved by

Samuel (1959) but seemed to have been forgottenlater on. For

example, Gherrity (1993) published a thesis on a system

architecture thatintegrates temporal-difference learning and

search for a variety of games (tic-tac-toe,Connect-4, and

chess), but this problem does not seem to be mentioned.

D. Feature construction

The crucial point for all approaches that tune

evaluation functions is the presence ofcarefully selected

features that capture important information about the current

stateof the game which goes beyond the location of the pieces.

In chess, concepts likeking safety, center control or mobility

are commonly used for evaluating positions, andsimilar

abstractions are used in other games as well (Lee and

Mahajan 1988; Ender-ton 1991). Tesauro and Sejnowski

(1989) report an increase in playing strength of 15to 20%

when adding hand-crafted features that capture important

concepts typicallyused by backgammon experts (e.g.,

pipcounts) to their neural network backgammonevaluation

function. Although Tesauro later demonstrated that his TD()-

trained networkcould surpass this playing level without these

features, re-inserting them broughtyet another significant

increase in playing strength (Tesauro 1992b). Samuel (1959)

alreadyconcluded his famous study by making the point that

the most promising road towardsfurther improvements of his

approach might be ―. . . to get the program to generateits own

parameters for the evaluation polynomial‖ instead of learning

only weightsfor manually constructed features. However, in

the follow-up paper, he had to concedethat the goal of ―. . .

getting the program to generate its own parameters remains as

farin the future as it seemed to be in 1959‖ (Samuel 1967).

The disadvantage of the features constructed in the

hidden layers of neural networksis that they are not

immediately interpretable. Several authors have worked on

alternativeapproaches that attempt to create symbolic

descriptions of new features. Fawcettand Utgoff(1992)

discuss the ZENITH system, which automatically constructs

featuresfor a linear evaluation function for Othello. Each

feature is represented as a formula infirst-order predicate

calculus.

E. Advice-taking

The learning technique that requires the least

initiative by the learner is learning bytaking advice. In this

framework, the user is able to communicate abstract

conceptsand goals to the program. In the simplest case, the

provided advice can be directlymapped on to the program’s

internal concept representation formalism. One such

exampleisWaterman’s poker player (Waterman 1970).

Among other learning techniques,it provides the user the

facility to directly add production rules to the game-

playingprogram. Another classic example of such an

approach is the work by Zobrist andCarlson (1973), in which

a chess tutor could provide the program with a library

ofuseful patterns using a chess programming language that

looked a lot like assemblylanguage. Many formalisms have

since been developed in the same spirit (Bratko andMichie

1980; George and Schaeffer 1990; Michie and Bratko

1991),most of them limitedto endgames, but some also

addressing the full game (Levinson and Snyder 1993;

While in the above-mentioned approaches thetutoring process

is often more orless equivalent to programming in a high-

level game programming language, typicallyadvice-taking

programs have to devote considerable effort into compiling

the providedadvice into their own pattern language. Thus they

enable the user to communicatewith the program in a very

intuitiveway that does not require any knowledge about

theimplementation of the program nor about programming in

general.

The most prominent example for such an approach is

the work by Mostow (1981).He has developed a system that

is able to translate abstract pieces of advice in the

cardgameHearts into operational knowledge that can be

understood and directly accessed .The basic pattern for a

knight fork is a knight threatening two pieces, thereby

winning one of them. Inthe endgame, these might simply be

two unprotected pawns (unless one of them protects the

other). In themiddlegame, these are typically higher-valued

pieces (protected or not). However, this definition might

notwork if the forking knight is attacked but not protected or

even pinned. But then again, perhaps the attackingpiece is

pinned as well. Or the pinned knight can give a discovered

check . . .by the machine. For example, the user can specify

the hint ―avoid taking points‖ andthe program is able to

translate this piece of advice into a simple, heuristic search

procedurethat determines the card that is likely to take the

least number of points (Mostow1983). However, his system is

not actually able to play a game of Hearts. In particular,his

architecture lacks a technique for evaluating and combining

the different pieces ofadvice that might be applicable to a

given game situation.

F. Cognitive models

Psychological studies have shown that the

differences in playing strengths betweenchess experts and

novices are not so much due to differences in the ability to

calculatelong move sequences, but to which moves they start

to calculate (de Groot 1965; Chaseand Simon 1973; Holding

1985; de Groot and Gobet 1996; Gobet and Simon 2001)

For this pre-selection of moves chess players make

use of patterns and accompanyingpromising moves and plans.

Simon and Gilmartin (1973) estimate the number of achess

expert’s patterns to be of the order of 10,000 to 100,000.

Similar results havebeen found for other games (Reitman

1976; Engle and Bukstel 1978;Wolff et al. 1984).

This seems to indicate that CHUMP re-usesonly few

patterns, while it continuously generates new patterns.TAL

(Flinter and Keane 1995) is a similar system which also uses

a library ofchunks, which has also been acquired from a

selection of Tal’s games, for restrictingthe number of moves

considered. It differs in the details of the representation of

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 6, 2022 | Page No. 19

thechunks and the implementation of their retrieval. Here, the

authors observed a seeminglylogarithmic relationship

between the frequency of a chunk and the number

ofoccurrences of chunks with that frequency.

Epstein (1994b, Epstein (2001) A special Advisor—

PATSY—is able to make use of anautomatically acquired

chunk library, and comments in favor of patterns that are

associatedwith wins and against patterns that are associated

with losses.These chunks areacquired using a collection of so-

called spatial templates, a meta-language that allowsto

specify which subparts of the current board configuration are

interesting to be consideredas pattern candidates. Patterns that

occur frequently during play are retainedand associated with

the outcome of the game (Epstein et al. 1996). HOYLE is

alsoable to generalize these patterns into separate, pattern-

oriented Advisors. Similar toPATSY, another Advisor—

ZONE RANGER—may support moves to a position

whosezones have positive associations, where a zone is

defined as a set of locations that canbe reached in a fixed

number of moves. The patterns and zones used by PATSY

and

ZONE RANGER are attempts to capture and model visual

perception. There is alsosome empirical evidence that

HOYLE exhibits similar playing and learning behaviour than

human game players (Rattermann and Epstein 1995).

V. CONCLUSIONS

In this paper, we have surveyed research in machine

learning for computer game playing. It is unavoidable that

such an overview is somewhat biased by the author’s

knowledge and interests, and our sincere apologies go to all

authors whose work had to be ignored due to our space

constraints or ignorance. Nevertheless, we hope that we have

provided the reader with a good starting point that is helpful

for identifying the relevant works to start one’s own

investigations. If there is a conclusion to be drawn from this

survey, then it should be that research in game playing poses

serious and difficult problems which need to be solved with

existing or yet-to-be-developed machine learning techniques

ACKNOWLEDGMENT

The heading of the Acknowledgment section and the

References section must not be numbered.

Causal Productions wishes to acknowledge Michael Shell

and other contributors for developing and maintaining the

IEEE LaTeX style files which have been used in the

preparation of this template. To see the list of contributors,

please refer to the top of file IEEETran.cls in the IEEE

LaTeX distribution.

REFERENCES

[1] ALLIS, V. (1988, October). A knowledge-based approach of Connect-
Four — thegame is solved: White wins. Master’s thesis, Department

of Mathematics andComputer Science, VrijeUniversiteit, Amsterdam,

The Netherlands.

[2] ANGELINE, P. J. & J. B. POLLACK (1994).Competitive

environments evolve bettersolutions for complex tasks. In Proceedings
of the 5th International Conferenceon Genetic Algorithms (GA-93), pp.

264–270.

[3] BAIN, M. (1994). Learning Logical Exceptions in Chess.Ph. D. thesis,
Departmentof Statistics and Modelling Science, University of

Strathclyde, Scotland.

[4] BAIN, M. & A. SRINIVASAN (1995). Inductive logic programming
with large-scaleunstructured data. In K. Furukawa, D. Michie, and S.

H. Muggleton (Eds.), MachineIntelligence 14, pp. 233–267. Oxford

University Press.

[5] BAXTER, J., A. TRIDGELL, & L. WEAVER (1998a). A chess
program that learnsby combining TD(lambda) with game-tree search.

In Proceedings of the 15thInternational Conference on Machine

Learning (ICML-98), Madison, WI, pp.28–36. Morgan Kaufmann.
[6] BEAL, D. F. & M. C. SMITH (1997, September). Learning piece

values usingtemporal difference learning. International Computer

Chess Association Journal20(3), 147–151.
[7] BERLINER, H., G. GOETSCH, M. S. CAMPBELL, & C. EBELING

(1990). Measuringthe performance potential of chess programs.

Artificial Intelligence 43,7–21.
[8] BHANDARI, I., E. COLET, J. PARKER, Z. PINES, R. PRATAP, &

K. RAMANUJAM(1997). Advanced Scout: Data mining and

knowledge discovery in NBA data.Data Mining and Knowledge

Discovery 1, 121–125.
[9] BILLINGS, D. (2000a, March). The first international RoShamBo

programmingcompetition. International Computer Games Association

Journal 23(1), 42–50.
[10] BISHOP, C. M. (1995). Neural Networks for Pattern Recognition.

Oxford, UK:Clarendon Press.

[11] BOYAN, J. A. (1992). Modular neural networks for learning context-

dependentgame strategies. Master’s thesis, University of Cambridge,

Department of Engineeringand Computer Laboatory.

[12] BRAFMAN, R. I. & M. TENNENHOLTZ (1999). A near-optimal
polynomial timealogorithmfor learning in stochastic games.In

Proceedings of the 16th InternationalJoint Conference on Artificial
Intelligence (IJCAI-99), pp. 734–739.

[13] BRATKO, I. & R. KING (1994). Applications of inductive logic

programming.SIGART Bulletin 5(1), 43–49.
[14] THRUN, S. (1995). Learning to play the game of chess. In G. Tesauro,

D. Touretzky,and T. Leen (Eds.), Advances in Neural Information
Processing Systems 7, pp.1069–1076. Cambridge, MA: The MIT

Press.

[15] TIGGELEN, A. V. (1991). Neural networks as a guide to optimization.
Thechess middle game explored. International Computer Chess

Association Journal14(3), 115–118.

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 6, 2022 | Page No. 20

