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Abstract— This paper provides a survey of previously 

published work on machine learning in game playing. The 

material is organized around a variety of problems that typically 

arise in game playing and that can be solved with machine 

learning methods. This approach, we believe, allows both, 

researchers in game playing to find appropriate learning 

techniques for helping to solve their problems as well as machine 

learning researchers to identify rewarding topics for further 

research in game-playing domains. The paper covers learning 

techniques that range from neural networks to decision tree 

learning in games that range from poker to chess. However, 

space constraints prevent us from giving detailed introductions 

to the used learning techniques or games. Overall, we aimed at 

striking a fair balance between being exhaustive and being 

exhausting. 

 
Keywords— machine learning, game paying, decision tree, 
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I. INTRODUCTION 

In this paper, we will attempt to survey the large amount 

of literature that deals withmachine-learning approaches to 

game playing. Unfortunately, space and time do notpermit 

us to provide introductory knowledge in either machine 

learning or game playing. The main goal of this paper is to 

enablethe interested reader to quickly find previous results 

that are relevant for her researchproject, so that she may 

start her investigations from there. 

There are several possibleways for organizing the material 

in this paper. We could,for example, have grouped it by the 

different games (chess, Go, backgammon, shogi,Othello, 

bridge, poker to name a few more popular ones) or by the 

learning techniquesused (as we have previously done for the 

domain of chess (Furnkranz 1996)). Instead,we decided to 

take a problem-oriented approach and grouped them by the 

challengesthat are posed in different aspects of the game. 

This, we believe, allows both, researchersin game playing to 

find appropriate learning techniques for helping to solvetheir 

problems as well as machine learning researchers to identify 

rewarding topics forfurther research in game-playing 

domains. 

We will start with a discussion of book learning, i.e., for 

techniques that store precalculatedmoves in a so-called book 

for rapid access in tournament play. 

Next, we will address the problem of using learning 

techniques for controlling thesearch procedures that are 

commonly used in game playing programs, we will review 

the most popular learning task, namely the automatic 

tuningof an evaluation function. We will consider 

supervised learning, comparison training,reinforcement and 

temporal-difference learning. In a separate subsection, we 

will discussseveral important issues that are common to 

these approaches. Thereafter, we will survey various 

approaches for automatically discovering patterns and 

plans,moving from simple advice-taking over cognitive 

modeling approaches to the inductionof patterns and playing 

strategies from game databases. Finally, wewill briefly 

discuss opponent modeling, i.e., the task of improving the 

program’s playby learning to exploit the weaknesses of 

particular opponents. 

 

II. LEARNING TO CHOOSE OPENING VARIATIONS 

The idea of using opening books to improve machine-play 

has been present since theearly days of computer game- 

playing. Samuel (1959) already used an opening bookin his 

checkers playing program, as did Greenblatt, Eastlake III, and 

Crocker (1967) intheir chess program. Opening books, i.e., 

pre-computed to replies for a set of positions,can be easily 

programmed and are a simple way for making human 

knowledge, whichcan be found in game-playing books, 

accessible to the machine. However, the questionwhich of the 

many book moves a program should choose is far from 

trivial.Hyatt (1999) tackles the problem of learning which 

opening his chess programCRAFTY should play and which it 

should avoid. He proposes a reinforcement learningtechnique 

(cf. Section 4.3) to solve this problem, using the computer’s 

position evaluation after leaving the book as an evaluation of 

the playability of the chosen line. Inorder to avoid the 

problem that some openings (gambits) are typically 

underestimatedby programs, CRAFTY uses the maximum or 

minimum (depending on the trend) of theevaluations of the 

ten positions encountered immediately after leaving book. 

 
A. Learning from mistakes 

A straight-forward approach for learning to avoid to 

repeat mistakes is to remembereach position in which the 
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program made a mistake so that it is alert when this positionis 

encountered the next time. The game-playing system HOYLE 

(Epstein 2001)implements such an approach. After each 

decisive game, HOYLE looks for the lastposition in which 

the loser could have made an alternative move and tries to 

determinethe value of this position through exhaustive search. 

If the search succeeds, the stateis marked as ―significant‖ and 

the optimal move is recorded for future encounters withthis 

position. If the search does not succeed (and hence the 

optimal move could not bedetermined), the state is marked as 

―dangerous‖.  More  details  on  this  technique  can  befound  in 

(Epstein 2001). 

In conventional, search-based game-playing 

programs such techniques can easilybe implemented via their 

transposition tables (Greenblatt et al. 1967; Slate and 

Atkin1983). Originally, transposition tables were only used 

locally with the aim of avoidingrepetitive search efforts (e.g., 

by avoiding to repeatedly search for the evaluation of 

aposition that can be reached with different move orders). 

However, the potential ofusing global transposition tables, 

which are initialized with a set of permanently storedpositions, 

to improve play over a series of games was soon recognized. 

Once more, it was Samuel (1959) who made the first 

contribution in this direction.His checkers player featured a 

rote learning procedure that simply stored every 

positionencountered together with its evaluation so that it 

could be reused in subsequentsearches. With such techniques, 

deeper searches are possible because on the one handthe 

program is able to save valuable time because positions 

encountered in memorydo not have to be re-searched. On the 

other hand, if the search encounters a stored. Actually, Buro 

suggests to discern between public draws and private draws. 

The latter—being a resultof the program’s own analysis or 

experience and thus, with some chance, not part of the 

opponent’s bookknowledge—could be tried in the hope that 

the opponents makes a mistake, while the former may lead 

toboring draws when both programs play their bookmoves (as 

is known from many chess grandmaster draws). 

 

A very similar technique was used in the BEBE 

chessprogram, where the transposition table was initialized 

with positions from previousgames. It has been 

experimentally confirmed that this simple technique learning 

infact improves its score considerably when playing 100-200 

games against the sameopponent (Scherzer et al. 1990).In 

game like chess, such rote learning techniques help in 

opening or endgame play. 

In complicated middlegamepositions,where most pieces are 

still on the board, chancesare considerably lower that the 

same position will be encountered in another game. 

Thus, in order to avoid an explosion of memory 

costs by saving unnecessary positions,Samuel (1959) also 

devised a scheme for forgetting positions that are not or only 

infrequentlyused. Other authors tried to cope with these 

problems by being selective inwhich positions are added to 

the table. For example, Hsu (1985) tried to identify thefaulty 

moves in lost games by looking for positions in which the 

value of the evaluationfunction suddenly drops. Positions 

near that point were re-investigated with a deepersearch. If 

the program detected that it had made a mistake, the position 

and the correctmove were added to the program’s global 

transposition table. If no single move couldbe blamed for the 

loss, a re-investigation of the game moves with a deeper 

search wasstarted with the first position that was searched 

after leaving the opening book. Frey(1986) describes two 

cases where an Othello program (Hsu 1985) successfully 

learnedto avoid a previous mistake. Similar techniques were 

refined later (Slate 1987) andwere incorporated into state-of- 

the-art game playing programs, such as the chessprogram 

CRAFTY (Hyatt 1999). 

Baxter, Tridgell, and Weaver (1998b) also adopt this 

technology but discuss someinconsistencies and propose a 

few modifications to avoid them. In particular, theypropose to 

insert not only the losing position but also its two successors. 

Every time aposition is inserted, a consistency check is 

performed to determinewhether the positionleads to another 

book position with a contradictory evaluation, in which case 

bothpositions are re-evaluated. This technique has the 

advantage that only moves that havebeen evaluated by the 

computer are entered into the book, so that it never 

stumbles―blindly‖ into a bad book variation. 

 

III. LEARNING FROM SIMULATION 

The previous techniques were developed for deterministic, 

perfect information gameswhere evaluating a position is 

usually synonymous for searching all possible continuationsto 

a fixed depth. Some of them may be hard to adapt for games 

with imperfectinformation (e.g., card games like bridge) or a 

random component (e.g., dice gameslike backgammon) 

where deep searches are infeasible and techniques like storing 

precomputedevaluations in a transposition table do not 

necessarily lead to significantchanges in playing strengths. In 

these cases, however, conventional search can bereplaced by 

simulation search (Schaeffer 2000), a search technique which 

evaluatespositions by playing a multitude of games with this 

starting position against itself. Ineach of these games, the 

indeterministic parameters are assigned different, 

concretevalues (e.g., by different dice rolls or by dealing the 

opponents a different set of cardsor tiles). Statistics are kept 

over all these games which are then used for evaluating 

thequality of the moves in the current state. 

Tesauro (1995) notes that such roll-outs can produce quite 

reliable comparisonsbetween moves, even if the used 

program is not of master strength. In the case ofbackgammon, 

such analyses have subsequently led to changes in opening 

theory (Robertie1992, 1993). Similar techniques can be (and 

indeed are) used for position evaluationin games like bridge 

(Ginsberg 1999), Scrabble (Sheppard 1999), or poker 

(Billingset al. 1999), and were even tried as an alternative for 

conventional search in the gameof Go (Brugmann 1993). It 

would also be interesting to explore the respective 

advantagesof such Monte-Carlo search techniques and 
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reinforcement learning (see (Suttonand Barto 1998) for a 

discussion of this issue in other domains). 

 

A.Evaluation Function Tuning 

The most extensively studied learning problem in 

game playing is the automatic adjustmentof the weights of an 

evaluation function. Typically, the situation is as follows: 

the game programmer has provided the programwith a library 

of routines that computeimportant properties of the current 

board position (e.g., the number of pieces of each4Inductive 

logic programming (ILP) refers to a family of learning 

algorithms that are able to inducePROLOG programs and can 

thus rely on a more expressive concept language than 

conventional learningalgorithms, which operate in 

propositional logic (Muggleton 1992; Lavraˇc and Dˇzeroski 

1993; De Raedt1995; Muggleton and De Raedt 1994). Its 

strengths become particularly important in domains where 

astructural description of the training objects is of importance, 

like, e.g., in describing molecular structures(Bratko and King 

1994; Bratko and Muggleton 1995). They also seem to be 

appropriate for many gameplaying domains, in which a 

description of the spatial relation between the pieces is often 

more importantthan their actual location.kind on the board, 

the size of the territory controlled, etc.). What is not known is 

howto combine these pieces of knowledge and how to 

quantify their relative importance. 

The known approaches to solving this problem can 

be categorized along severaldimensions. In what follows, we 

will discriminate them by the type of training informationthey 

receive. In supervised learning the evaluation function is 

trained on informationabout its correct values, i.e., the learner 

receives examples of positions ormovesalong with their 

correct evaluation values. In comparison training, it is 

provided witha collection of move pairs and the information 

which of the two is preferable. Alternativelyit is given a 

collection of training positions and the moves that have been 

playedin these positions. In reinforcement learning, the 

learner does not receive any directinformation about the 

absolute or relative value of the training positions or moves. 

Instead,it receives feedback from the environment whether its 

moves were good or bad. 

In the simplest case, this feedback simply consists of the 

information whether it haswon or lost the game. Temporal- 

difference learning is a special case of reinforcementlearning 

which can use evaluation function values of later positions to 

reinforce or correctdecisions earlier in the game. This type of 

algorithm, however, has become sofashionable for evaluation 

function tuning that it deserves its own subsection. Finally,in 

Section 4.5, we will discuss a few important issues for 

evaluation function training. 

 
B. Supervised learning 

A straight-forward approach for learning theweights 

of an evaluation function is to providethe program with 

example positions for which the exact value of the 

evaluationfunction is known. The program then tries to adjust 

the weights in a way that minimizesthe error of the evaluation 

function on these positions. The resulting function,learned by 

linear optimization or some non-linear optimization technique 

like backpropagationtraining for neural networks, can then be 

used to evaluate new, previouslyunseen positions. 

Mitchell (1984) applied such a technique to learning an 

evaluation function for thegame of Othello (see also (Frey 

1986)). 

These values were then used for computing 

appropriateweights of the 28 features of a linear evaluation 

function by means of regression.In the game of Othello, Lee 

and Mahajan (1988) relied on BILL, a—for the time—very 

strong program5 that used hand-crafted features, to provide 

training examplesby playing a series of games against itself. 

Variety was ensured by playing the first20 plies randomly. 

Each position was labeled as won or lost, depending on the 

actualoutcome of the game, and represented with four 

different numerical feature scores (Leeand Mahajan 1990). 

The covariance matrix of these features was computed from 

thetraining data and this information was used for learning 

several Bayesian discriminantfunctions (one for each ply 

from 24 to 49), which estimated the probability of winningin 

a given position. The results showed a great performance 

improvement over the5In 1997, BILL was tested against 

Buro’s LOGISTELLO and appeared comparably weak: 

running onequal hardware and using 20 minutes per game 

BILL was roughly on par with 4-ply LOGISTELLO, 

whichonly used a couple of seconds per game (Buro 2000, 

personal communication).original program. A similar 

procedure was used by Buro (1995b). He further 

improvedclassification accuracy by building a complete 

position tree of all games. Interior nodeswere labelled with 

the results of a fast negamax search, which he also used for 

hisapproach to opening book learning (see Section 2.2 and 

(Buro 2001)). 

Tesauro and Sejnowski (1989) trained the first 

neural-network evaluation functionof the program that has 

later developed into TD-GAMMON by providing it with 

severalthousand expert-rated training positions. 

In fact, overfittingthe training data did hurt the 

performance on independent test data, a common 

phenomenonin machine learning. Likewise, in (Dahl 2001), a 

neural network is trainedto evaluate parts of Go positions, so- 

called receptive fields. Its training input consistsof a number 

of positive examples, receptive fields in which the expert 

played into itscenter, and for each of them a negative example, 

another receptive field from the sameposition, which was 

chosen randomly from the legal moves that the expert did not 

play. 

 

IV. COMPARISON TRAINING 

Tesauro (1989a) introduced a new framework for training 

evaluation functions, whichhe called comparison training, 

thelearner is not given exact evaluations for the 

possiblemoves (or resulting positions) butis only informed 

about their relative order. Typically, it receives examples in 
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the formof move pairs along with a training signal as to 

which of the two moves is preferable. 

However, the learner does not learn an explicit preference 

relation between moves as in(Utgoff and Heitman 1988), but 

tries to use this kind of training information for tuningthe 

parameters of an evaluation function (Utgoff and Clouse 

1991). Thus, the learnerreceives less training information 

than in the supervised setting, but more informationthan in 

the reinforcement learning setting. 

 

A. Reinforcement learning 

Reinforcement learning (Sutton and Barto 1998) is 

best described by imagining anagent that is able to take 

several actions whose task is to learn which actions aremost 

preferable in which states. However, contrary to the 

supervised learning setting,the agent does not receive training 

information from a domain expert. Instead,it may explore the 

different actions and, while doing so, will receive feedback 

fromthe environment—the so-called reinforcement or 

reward—which it can use to rate thesuccess of its own actions. 

In a game-playing setting, the actions are typically the 

legalmoves in the current state of the game, and the feedback 

is whether the learner winsor loses the game or by which 

margin it does so. We will describe this setting in more7A 

genetic algorithm (Goldberg 1989) is a randomized search 

algorithm. It maintains a population ofindividuals that are 

typically encoded as strings of 0’s and 1’s. All individuals of 

a so-called generationare evaluated according to their fitness, 

and the fittest individuals have the highest chance of 

surviving intothe next generation and of spawning new 

individuals through the genetic operators cross-over and 

mutation. 

For more details, see also (Kojima and Yoshikawa 

2001), which discusses the use of genetic algorithms 

forlearning to solve tsume-go problems.detail using 

MENACE, the Matchbox Educable Noughts And Crosses 

Engine (Michie1961, 1963), which learned to play the game 

of tic-tac-toe by reinforcement. 

MENACE has one weight associated with each of the 287 

different positions withthe first player to move (rotated 

ormirrored variants of identical positionswere mappedto a 

unique position). In each state, all possible actions (all yet 

unoccupied squares)are assigned a weight. The next action is 

selected at random, with probabilities correspondingto the 

weights of the different choices. Depending on the outcome 

of thegame, the moves played by the machine are rewarded or 

penalized by increasing ordecreasing their weight. Drawing 

the game was considered a success and was alsoreinforced 

(albeit by a smaller amount). 

However, the idea is that after many games, good 

positions willhave received more positive than negative 

reward and vice versa, so that the evaluationfunction 

eventually converges to a reasonable value. 

 
B. Linear vs. non-linear evaluation functions 

Most conventional game-playing programs depend on fast 

search algorithms and thusrequire an evaluation function that 

can be quickly evaluated. A linear combination ofa few 

features that characterize the current board situation is an 

obvious choice here. 

Manual tuning of the weights of a linear evaluation 

function is comparably simple, butalready very cumbersome. 

Not only the individual evaluation terms may depend oneach 

other, so that small changes in oneweightmay affect the 

correctness of the settingsof other weights, but also all 

weights depend on the characteristics of the program inwhich 

they are used. For example, the importance of being able to 

recognize tacticalpatterns such as fork threats may decrease 

with the program’s search depth or dependon the efficiency 

of the program’s quiescence search. 

However, advances in automated tuning techniques have even 

made the use of nonlinearfunction approximators feasible. 

Samuel (1967) already suggested the use ofsignature tables, a 

non-linear, layered structure of look-up tables. Clearly,non- 

lineartechniques have the advantage that they can 

approximate a much larger class of functions. 

 
C. Evaluation function learning and search 

In backgammon, deep searches are practically 

infeasible because of the large branchingfactor that is due to 

the chance element introduced by the use of dice. 

However,deep searches are also beyond the capabilities of 

human players whose strength liesin estimating the positional 

value of the current state of the board. Contrary to 

thesuccessful chess programs, who can easily out-search their 

human opponent but stilltrail her ability of estimating the 

positional merits of the current board configuration,TD- 

GAMMON was able to excel in backgammon for the same 

reasons that humansplay well: its grasp of the positional 

strengths and weaknesses was excellent. 

However, in games like chess or checkers, deep 

searches are necessary for expertperformance. A problem that 

has to be solved for these games is how to integratelearning 

into the search techniques. In particular in chess, one has the 

problem that theposition at the root of the node often has 

completely different characteristics than theevaluation of the 

node. Consider the situation where one is in the middle of a 

queentrade. The current board situation will evaluate as 

―being  one  queen  behind‖,  while  alittle  bit  of  search  will 

show that the position is actually even because the queen 

caneasily be recaptured within the next few moves. Straight- 

forward application of anevaluation function tuning algorithm 

would then simply try to adjust the evaluation ofthe current 

position towards being even. Clearly, this is not the right 

thing to do becausesimple tactical patterns like piece trades 

are typically handled by the search and neednot be recognized 

by the evaluation function. 

The solution for this problem is to base the 

evaluation on the dominant position ofthe search. The 

dominant position is the leaf position in the search tree whose 

evaluationhas been propagated back to the root of the search 

tree. Most conventional searchbasedprograms employ some 

form of quiescence search to ensure that this evaluationis 

fairly stable. Using the dominant position instead of the root 
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positionmakes sure thatthe estimation of the weight 

adjustments is based on the position that was responsiblefor 

the evaluation of the current board position. Not surprisingly, 

this problem has alreadybeen recognized and solved by 

Samuel (1959) but seemed to have been forgottenlater on. For 

example, Gherrity (1993) published a thesis on a system 

architecture thatintegrates temporal-difference learning and 

search for a variety of games (tic-tac-toe,Connect-4, and 

chess), but this problem does not seem to be mentioned. 

 

D. Feature construction 

The crucial point for all approaches that tune 

evaluation functions is the presence ofcarefully selected 

features that capture important information about the current 

stateof the game which goes beyond the location of the pieces. 

In chess, concepts likeking safety, center control or mobility 

are commonly used for evaluating positions, andsimilar 

abstractions are used in other games as well (Lee and 

Mahajan 1988; Ender-ton 1991). Tesauro and Sejnowski 

(1989) report an increase in playing strength of 15to 20% 

when adding hand-crafted features that capture important 

concepts typicallyused by backgammon experts (e.g., 

pipcounts) to their neural network backgammonevaluation 

function. Although Tesauro later demonstrated that his TD()- 

trained networkcould surpass this playing level without these 

features, re-inserting them broughtyet another significant 

increase in playing strength (Tesauro 1992b). Samuel (1959) 

alreadyconcluded his famous study by making the point that 

the most promising road towardsfurther improvements of his 

approach might be ―. . . to get the program to generateits own 

parameters for the evaluation polynomial‖ instead of learning 

only weightsfor manually constructed features. However, in 

the follow-up paper, he had to concedethat the goal of ―. . . 

getting the program to generate its own parameters remains as 

farin the future as it seemed to be in 1959‖ (Samuel 1967). 

The disadvantage of the features constructed in the 

hidden layers of neural networksis that they are not 

immediately interpretable. Several authors have worked on 

alternativeapproaches that attempt to create symbolic 

descriptions of new features. Fawcettand Utgoff(1992) 

discuss the ZENITH system, which automatically constructs 

featuresfor a linear evaluation function for Othello. Each 

feature is represented as a formula infirst-order predicate 

calculus. 

E. Advice-taking 

The learning technique that requires the least 

initiative by the learner is learning bytaking advice. In this 

framework, the user is able to communicate abstract 

conceptsand goals to the program. In the simplest case, the 

provided advice can be directlymapped on to the program’s 

internal concept representation formalism. One such 

exampleisWaterman’s poker player (Waterman 1970). 

Among other learning techniques,it provides the user the 

facility to directly add production rules to the game- 

playingprogram. Another classic example of such an 

approach is the work by Zobrist andCarlson (1973), in which 

a chess tutor could provide the program with a library 

ofuseful patterns using a chess programming language that 

looked a lot like assemblylanguage. Many formalisms have 

since been developed in the same spirit (Bratko andMichie 

1980; George and Schaeffer 1990; Michie and Bratko 

1991),most of them limitedto endgames, but some also 

addressing the full game (Levinson and Snyder 1993; 

While in the above-mentioned approaches thetutoring process 

is often more orless equivalent to programming in a high- 

level game programming language, typicallyadvice-taking 

programs have to devote considerable effort into compiling 

the providedadvice into their own pattern language. Thus they 

enable the user to communicatewith the program in a very 

intuitiveway that does not require any knowledge about 

theimplementation of the program nor about programming in 

general. 

The most prominent example for such an approach is 

the work by Mostow (1981).He has developed a system that 

is able to translate abstract pieces of advice in the 

cardgameHearts into operational knowledge that can be 

understood and directly accessed .The basic pattern for a 

knight fork is a knight threatening two pieces, thereby 

winning one of them. Inthe endgame, these might simply be 

two unprotected pawns (unless one of them protects the 

other). In themiddlegame, these are typically higher-valued 

pieces (protected or not). However, this definition might 

notwork if the forking knight is attacked but not protected or 

even pinned. But then again, perhaps the attackingpiece is 

pinned as well. Or the pinned knight can give a discovered 

check . . .by the machine. For example, the user can specify 

the  hint  ―avoid  taking  points‖  andthe  program  is  able  to 

translate this piece of advice into a simple, heuristic search 

procedurethat determines the card that is likely to take the 

least number of points (Mostow1983). However, his system is 

not actually able to play a game of Hearts. In particular,his 

architecture lacks a technique for evaluating and combining 

the different pieces ofadvice that might be applicable to a 

given game situation. 

 
F. Cognitive models 

Psychological studies have shown that the 

differences in playing strengths betweenchess experts and 

novices are not so much due to differences in the ability to 

calculatelong move sequences, but to which moves they start 

to calculate (de Groot 1965; Chaseand Simon 1973; Holding 

1985; de Groot and Gobet 1996; Gobet and Simon 2001) 

For this pre-selection of moves chess players make 

use of patterns and accompanyingpromising moves and plans. 

Simon and Gilmartin (1973) estimate the number of achess 

expert’s patterns to be of the order of 10,000 to 100,000. 

Similar results havebeen found for other games (Reitman 

1976; Engle and Bukstel 1978;Wolff et al. 1984). 

This seems to indicate that CHUMP re-usesonly few 

patterns, while it continuously generates new patterns.TAL 

(Flinter and Keane 1995) is a similar system which also uses 

a library ofchunks, which has also been acquired from a 

selection of Tal’s games, for restrictingthe number of moves 

considered. It differs in the details of the representation of 
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thechunks and the implementation of their retrieval. Here, the 

authors observed a seeminglylogarithmic relationship 

between the frequency of a chunk and the number 

ofoccurrences of chunks with that frequency. 

Epstein (1994b, Epstein (2001) A special Advisor— 

PATSY—is able to make use of anautomatically acquired 

chunk library, and comments in favor of patterns that are 

associatedwith wins and against patterns that are associated 

with losses.These chunks areacquired using a collection of so-

called spatial templates, a meta-language that allowsto 

specify which subparts of the current board configuration are 

interesting to be consideredas pattern candidates. Patterns that 

occur frequently during play are retainedand associated with 

the outcome of the game (Epstein et al. 1996). HOYLE is 

alsoable to generalize these patterns into separate, pattern- 

oriented Advisors. Similar toPATSY, another Advisor— 

ZONE RANGER—may support moves to a position 

whosezones have positive associations, where a zone is 

defined as a set of locations that canbe reached in a fixed 

number of moves. The patterns and zones used by PATSY 

and 

ZONE RANGER are attempts to capture and model visual 

perception. There is alsosome empirical evidence that 

HOYLE exhibits similar playing and learning behaviour than 

human game players (Rattermann and Epstein 1995). 

 

V. CONCLUSIONS 

In this paper, we have surveyed research in machine 

learning for computer game playing. It is unavoidable that 

such an overview is somewhat biased by the author’s 

knowledge and interests, and our sincere apologies go to all 

authors whose work had to be ignored due to our space 

constraints or ignorance. Nevertheless, we hope that we have 

provided the reader with a good starting point that is helpful 

for identifying the relevant works to start one’s own 

investigations. If there is a conclusion to be drawn from this 

survey, then it should be that research in game playing poses 

serious and difficult problems which need to be solved with 

existing or yet-to-be-developed machine learning techniques 
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