
 

 

 

An Experimental Study On Different Data 

Models In Apache Hive 
Jisha Mariam#1 

#Dept of Computer Science, New Horizon College of Engineering 
1jmjisha@gmail.com 

 
Abstract— Apache Hive is an open-source data warehousing solution built on top of Hadoop that has been used for performing 

various analysis by organization from different sectors. Hive support SQL similar language for querying called as Hive Query 

language (HQL). The Hive compiler converts the code written in HiveQL to MapReduce Programs automatically. Hive also includes 

a database or metastore which is used for storing schemas and thus used in query optimization. In addition, HiveQL can be run in 

both interactive mode and as Hive scripts. It also supports various data types including primitive types, collection of arrays, 

structures,maps. In this paper, I have tried to perform analysis using a dataset on different data models in Hive. A comparison study 

is performed on Total query execution time and total CPU time spent as parameters. 

 

Keywords— Hive, HiveQL, Data Models, Metastore, Hive Analysis, Hive Partition, Hive Bucketing 

I. INTRODUCTION 

Hive is a data warehousing infrastructure tool in Hadoop Ecosystem which provides SQL similar language HiveQL for 

querying and analysing Big Data. The motivation behind the development of Hive is the friction-less learning path for SQL 

developers & analyst. Hive has helped the programmers by saving the time spend on writing long Java MapReduce 

Programmers. Apache Hive is a data warehouse system built on top of Hadoop and is used for analysing structured and semi- 

structured data. 

A. Page Layout 

Before 2008, all the data processing infrastructure in Facebook was built around a data warehouse based on commercial 

RDBMS. At that time RDBMS was sufficient enough to store and analyse the data. Later it became a challenge for RDBMS to 

handle such large volume, velocity and variety of data for storage and perform SQL analysis. According to a Facebook article, 

the data scaled from a 15 TB data set in 2007 to a 2 PB data in 2009. And the infrastructure available at that time was not 

sufficient to cope up with the speed of data got generated and the daily data analysis process was getting delayed. So, they 

needed a scalable and economical solution to cope up with this very problem and, therefore started using the Hadoop 

framework. But the challenge with Hadoop MapReduce was to write thousand lines of MapReduce code in Java for simple 

analysis and all programmers were not having good knowledge in Java unlike RDBMS SQL. 

Later Facebook developers thought of building a tool on top of Hadoop that can make Hadoop accessible to users with SQL 

background and thus they build Hive in January 2007. The vision was to bring the familiar concepts of tables, columns, 

partitions and a subset of SQL to the unstructured world of Hadoop, while still maintaining the extensibility and flexibility that 

Hadoop enjoyed [1]. In August 2008, Hive was made available as open source and it became very popular among all users 

within Facebook. This helped in running thousands of jobson the Hadoop/Hive cluster with hundreds of users for a wide variety 

of applications starting from simple summarization jobs to business intelligence, machine learning applications and to also 

support Facebook product features [1]. 

 

B. Featuers 

Hive became very popular among non-programmers also as it eliminates the need for writing complex MapReduce programs. 

Some of it features are: 

- It provides simple SQL similar language called HiveQL 

- It is good for Online Analytic Processing(OLAP) 

- It can be scalable to accommodate the growing volume and variety of data without affecting performance of the system. 

- It works efficiently as ETL (Extract, Transform, Load) tool 

- Hive supports any client application written in Java, PHP, Python, C++ or Ruby by exposing its Thrift server 

- It stores the metadata information in metastore that helps to perform semantic checks during query execution and the 

data to be processed in Hadoop Distributed Filesystem(HDFS). 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 7, 2022 | Page No. 17

mailto:1jmjisha@gmail.com
mailto:jmjisha@gmail.com


 

 

Apache Hive is used as data warehousing and for ad-hoc analysis. Hive has some limitation too like it cannot be used for real 

time queries and Online Transaction Processing. Therefore, Hive is coupled with other tools to make it useful in other domains 

too. For example, Tableau along with Apache Hive can be used for Data Visualization, Apache Tez integration with Hive 

provide real time processing capabilities, etc. 

 
 

II. HIVE ARCHITECTURE 

The main components of Hive architecture are User interfaces, Driver Metastore, Hive Query Compiler, Execution Engine, 

HDFS or HBASE. 

Interfaces: Hive provides many user interfaces like Hive Web UI, Hive command line, and Hive HD Insight (In Windows 

server), application programming interfaces (API) like JDBC and ODBC for interaction between user and HDFS [2]. 

 

MetaStore: Hive stores the schema or Metadata of tables, databases, columns in a table, their data types, and HDFS mapping 

in database. The default database is Derby database. Metastore plays a very important role in imposing structure on Hadoop 

files. Any metadata that is needed by the mapper or the reducer is passed through xml plan files that are generated by the 

compiler and that contain any information that is needed at the run time [1]. 

 

The Driver manages: It manages the life cycle of a HiveQL statement during compilation, optimization and execution. On 

receiving the HiveQL statement, from the thrift server or other interfaces, it creates a session handle which is used to keep track 

of statistics like execution time, number of output rows, etc [2]. 

 

Query Compiler: The compiler processes the HiveQL statements to generate execution plan with the help of metadata stored 

in Metastore. At first, parser generates abstract syntax tree (AST) for the query. During this phase, type checking and 

semantics analysis are done by fetching the information of all input and output tables from the Metastore. This information used 

for building the logic plan or DAG(Direct Acyclic Graph). Later a chain of transformations is applied as a part of optimization 

logic where the operator DAG resulting from one transformation is passed as input to next transformation. The logical plan 

generated at the end of the optimization phase is then split into multiple map/reduce and HDFS tasks. At the end of this stage 

the physical plan is generated that looks like a DAG of tasks with each task encapsulating a part of the plan. 

 

Execution Engine: Finally, this engine executes the execution plan created by the compiler. It manages the dependencies 

between different stages of DAG by executing the tasks in order of their dependencies. Each dependent task is executed only 

after the execution of all of its prerequisites. Execution Engine is the vital component as it directly interacts with Job Tracker, 

Name Node and Data nodes and produce a series of Map Reduce Jobs[4]. 

 

Hadoop MapReduce: In the execution of a Map/Reduce task, the operators inside this task are first initialized and then they 

will process the rows fetched by the MapReduce engine in a pipelined fashion. To perform read/write operation of a 

particular file format, Hive assigns the corresponding file reader/writer to the tasks that perform reading/writing of the table. 

For a file format, a serialization-deserialization library (called SerDe) is used to serialize and deserialize data. After all 

MapReduce jobs have finished, the Driver will fetch the results of the query to the user who submitted the query [5]. 

 

Hive processes the data not only stored in HDFS but also stored in other storage systems like HBase. In such case, a 

corresponding storage handler like HBase storage handler is used for reading and writing data stored on HBase. 

 
 

III. HIVE DATA MODELLING 

 
Databases: Namespaces function to avoid naming conflicts for tables, views, partitions, columns, and so on. Databases can 

also be used to enforce security for a user or group of users. 

 

Tables: Homogeneous units of data which have the same schema. An example of a table could be ‘student’ table, where 

each row could comprise of the following columns (schema): 

• USN —which is of BIGINT type 

• SNAME—which is of STRING type 

• AGE-which is of INT type 

• CITY—which is of STRING type 

• DOJ-which is of TIMESTAMP 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 7, 2022 | Page No. 18



 

 

 

Managed Table: As the name suggests (managed table), Hive is responsible for managing the data of a managed table. In 

other words, if you load the data from a file present in HDFS into a Hive Managed Table and issue a DROP command on it, the 

table along with its metadata will be deleted. So, the data belonging to the dropped managed_table no longer exist anywhere in 

HDFS and you can’t retrieve it by any means. 

 

External Table: For external table, Hive is not responsible for managing the data. In this case, when you issue the LOAD 

command, Hive moves the data into its warehouse directory. Then, Hive creates the metadata information for the external table. 

Now, if you issue a DROP command on the external table, only metadata information regarding the external table will be 

deleted. Therefore, you can still retrieve the data of that external table from the warehouse directory using HDFS commands. 

 

Partitions: Each Table can have one or more partition Keys which determines the data storage. Partitions, apart from being 

storage units, also allow the user to efficiently identify the rows that satisfy a specified criterion; for example, a date_partition 

of type STRING. Each unique value of the partition keys defines a partition of the Table. For example, all students are 

partitioned year wise, then analysis on students of a particular batch can be done by referring only to that particular year 

partition. 

 

Buckets (or Clusters): Data in each partition may in turn be divided into Buckets based on the value of a hash function of 

some column of the Table. For example, the “student” table may be bucketed by “city”, which is one of the columns, other than 

the partitions columns, of the “student” table. These can be used to efficiently sample the data. 

 

IV. IMPLEMENTATATION 

A. Experimental Setup: 

A real-time data collected by Govt of India from the field instruments directly without human intervention from CPCB is 

used in this paper. This data has been converted to .csv files and loaded to HDFS. It contains Real time National Air Quality 

Index values from different monitoring stations across India. The pollutants monitored are Sulphur Dioxide (SO2), Nitrogen 

Dioxide (NO2), Particulate Matter (PM10 and PM2.5), Carbon Monoxide (CO), Ozone(O3) etc. The attributes are Country, 

State, City, Place, last Update Time, Average Quality Index, Maximum Quality Index, Minimum Quality Index, Pollutant. 

 

(i) Creation of simple managed table 

create table air(country string,state string,city string,place string,lastup string,av int,ma int,mi int,pollutant string) row format 

delimited fields terminated by ',' lines terminated by '\n'; 

 

Loading of data from HDFS to Hive Managed table 

load data inpath '/user/cloudera/AirQuality.csv' into table air; 

 

(ii) Creation of Partitioned table 

create table part_air(country string, city string, place string, lastup string, av int, ma int, mi int, pollutant string) 

PARTITIONED BY (state string); 

 

• The column used for partitioning should have low cardinality i.e. low distinct values for that column. Because if we use 

the column with high cardinality, then we will end up with many sub directories or files. Since the number of mappers is 

dependent on input size and block size, creating many partitions would end up using many mappers and it would lead to 

wastage of resources in most cases. 

• If there are many partitions, then the Name Node which keeps track of meta data of file system in memory will also have 

unnecessary overhead since it has to track many partitions now. 

 

Setting up property for partition 

SET hive.exec.dynamic.partition=true; 

SET hive.exec.dynamic.partition.mode=non-strict; 

 

Loading data into Partition table 

Insert overwrite table part_air partition(state) select country,city,place,lastup,av,ma,mi,pollutant,state from air; 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 7, 2022 | Page No. 19



 

 

 

 

Hive Warehouse ‘part_air’ directory is split into many sub directories based on the partition column (state) as shown below: 

$hadoop fs -ls /user/hive/warehouse/part_air 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Andhra_Pradesh 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Bihar 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Delhi 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Gujarat 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Haryana 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Jharkhand 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Karnataka 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Kerala 

drwxr-xr-x - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Madhya Pradesh 
drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Maharashtra 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Odisha 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Punjab 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Rajasthan 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=TamilNadu 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Telangana 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Uttar_Pradesh 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:04 /user/hive/warehouse/part_air/state=West_Bengal 

 

We can also filter out a particular partitioned sub directory directly from HDFS as shown below: 

$hadoop fs -ls /user/hive/warehouse/part_air/state=Punjab 

-rw-rw-rw-3 cloudera supergroup3874 2019-06-27 03:04 /user/hive/warehouse/part_air/state=Punjab/000000_0 

 

(iii) Creation of table with bucketing 

Create Table buckt_air(country string, state string, city string, place string, lastup string, av int, ma int, mi int, pollutant string) 

clustered by (city) into 4 buckets; 

 

Bucketing concept is based on hashing function on bucketed column. The records which generate same hash will always be 

in the same bucket. To divide a table into buckets we use Clustered by clause. Each bucket is just like a file in directory and all 

files are equally distributed. 
The advantages of bucketing are: 

• Map-Side joins are faster on bucketed tables because they are of similar size. 

• We can keep the records sorted in each bucket 

• When the data is sorted by a column in buckets and they are used for join, Map-side joins are even faster 

• They also offer efficient sampling over non-bucketed tables 

• With bucketing we can always define number of buckets to be formed which is not the case in partitioning 

• Bucketing can be used with or without partitioning 

 

Set the properties for bucketing 

SET hive.enforce.bucketing =true; 

 

Loading the content into table with bucketing 

insert overwrite table buckt_air select country, state, city, place, lastup, av, ma, mi, pollutant from air; 

 

The entire content is divided into 4 buckets as shown below: 
$hadoop fs -ls /user/hive/warehouse/buckt_air 

-rw-rw-rw- 3 cloudera supergroup 36475 2019-06-27 03:31 /user/hive/warehouse/buckt_air/000000_0 

-rw-rw-rw- 3 cloudera supergroup 19548 2019-06-27 03:31 /user/hive/warehouse/buckt_air/000001_0 

-rw-rw-rw- 3 cloudera supergroup 5963 2019-06-27 03:31 /user/hive/warehouse/buckt_air/000002_0 

-rw-rw-rw- 3 cloudera supergroup 9181 2019-06-27 03:31 /user/hive/warehouse/buckt_air/000003_0 

 

(iv) Creation of table with partitionbucketing 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 7, 2022 | Page No. 20



 

 

create table partcluster_air(country string, city string, place string, lastup string, av int, ma int, mi int, pollutant string) 

PARTITIONED BY (state string) clustered by (city) into 4 buckets; 

 

 
Set the properties for partition and bucketing 

SET hive.exec.dynamic.partition=true; 

SET hive.exec.dynamic.partition.mode=non-strict; 

SET hive.enforce.bucketing =true; 

 

Loading the data into table with Partition bucketing 

insert overwrite table partcluster_air partition(state) select country,city,place,lastup,av,ma,mi,pollutant,state from air; 

 
The table partcluster_air is partitioned to many sub-directories based on the partition column(state) as follows: 

$hadoop fs -ls /user/hive/warehouse/partcluster_air 

drwxrwxrwt-cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Andhra_Pradesh 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Bihar 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Delhi 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Gujarat 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Haryana 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Jharkhand 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Karnataka 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Kerala 

drwxr-xr-x - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Madhya Pradesh 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Maharashtra 
drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Odisha 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Punjab 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Rajasthan 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=TamilNadu 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Telangana 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Uttar_Pradesh 

drwxrwxrwt - cloudera supergroup 0 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=West_Bengal 

 

One of the partitioned sub-directories named as “Punjab” is further divided into four files or buckets based on the clustering 

condition as shown below: 

$hadoop fs -ls /user/hive/warehouse/partcluster_air/state=Punjab 
-rw-rw-rw- 3 cloudera supergroup 1431 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Punjab/000000_0 

-rw-rw-rw- 3 cloudera supergroup 868 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Punjab/000001_0 

-rw-rw-rw- 3 cloudera supergroup 665 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Punjab/000002_0 

-rw-rw-rw- 3 cloudera supergroup 910 2019-06-27 03:42 /user/hive/warehouse/partcluster_air/state=Punjab/000003_0 

 

B. Analysis 

An analysis has been performed using different data models of Hive for different sets of queries. Total five queries have been 

executed on Hive managed table, table with partitioning, table with bucketing and table with partition bucketing concept. Total 

CPU time spent and query execution time have been compared for each of the query among different data model tables [6]. 

TABLE I 

LIST OF QUEIES 
 

Query. No Query Description 

Query 1 Compare the maximum and minimum level of pollution for 

each pollutant in the city “Bengaluru” 

Query 2 Analyse the count of pollutant for each city of 

“Uttar_Pradesh” 

Query 3 Compare the average, maximum, minimum pollution level for 

various pollutant in each city of “Rajasthan” 

Query 4 Analyse the average pollutant level in each city of “Andhra 
Pradesh” in ascending order of cities. 

Query 5 Compare the average, maximum, minimum “ozone” level in 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 7, 2022 | Page No. 21



 

 

 

 each major capital cities in ascending order of city names. 

 

Query 1: Compare the maximum and minimum level of pollution for each pollutant in the city “Bengaluru”. 
Using Simple Hive Managed table 

select pollutant, MAX(ma),MIN(mi) from air where city='Bengaluru' group by pollutant; 

Using Hive Partitioned table 

select pollutant, MAX(ma),MIN(mi) from part_air where city='Bengaluru' group by pollutant; 

 

Using Hive Bucketing table 

select pollutant, MAX(ma),MIN(mi) from buckt_air where city='Bengaluru' group by pollutant; 

 

Using Hive Partition Bucketing table 

select pollutant, MAX(ma),MIN(mi) from partcluster_air where city='Bengaluru' group by pollutant; 

 

Query 2: Analyse the count of pollutant for each city of “Uttar_Pradesh” 

Using Simple Hive Managed table 

select city, COUNT(pollutant) from air where state='Uttar_Pradesh' group by city; 

 

Similarly, the query is executed on Hive Partitioned table, Hive Bucketing table, Hive Partition Bucketing table 

 

Query 3: Compare the average, maximum, minimum pollution level for various pollutant in each city of “Rajasthan” 

Using Simple Hive Managed table 

select city, pollutant,av,ma,mi from air where state='Rajasthan' order by city; 

 

Similarly, the query is executed on Hive Partitioned table, Hive Bucketing table, Hive Partition Bucketing table 

 

Query 4: Analyse the average pollutant level in each city of “Andhra Pradesh” in ascending order of cities. 

Using Simple Hive Managed table 

select city, AVG(av) from air where state='Andhra_Pradesh' group by city order by city; 

 

Similarly, the query is executed on Hive Partitioned table, Hive Bucketing table, Hive Partition Bucketing table 

 

Query 5: Compare the average, maximum, minimum “ozone” level in each major capital cities in ascending order of city 

names. 

Using Simple Hive Managed table 

select AVG(av),MAX(ma),MIN(mi),city from air where city in 

('Amaravati','Patna','Ahmedabad','Bengaluru','Mumbai','Jaipur','Chennai', 'Hyderabad','Lucknow','Kolkata','Delhi') and 

pollutant='OZONE' group by city; 

 
Similarly, the query is executed on Hive Partitioned table, Hive Bucketing table, Hive Partition Bucketing table. 

 
 

V. RESULT AND DISCUSSION 

The study on various data model in Hive is accomplished by executing the queries on each of the following tables: 

- Hive Managed table 

- Hive Partitioned table 

- Hive Bucketing table 

- Hive Partition Bucketing table 

The total CPU Time Spent and Total Query Execution Time are recorded in seconds and milli-seconds for each of the query. 

These are plotted as charts as shown below: 

 

Query 1: Compare the maximum and minimum level of pollution for each pollutant in the city “Bengaluru”. 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 7, 2022 | Page No. 22



 

 

 

 
 

 

Query 2: Analyse the count of pollutant for each city of “Uttar_Pradesh” 

 
 

Query 3: Compare the average, maximum, minimum pollution level for various pollutant in each city of “Rajasthan” 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 7, 2022 | Page No. 23



 

 

 

 
 
 

 

Query 4: Analyse the average pollutant level in each city of “Andhra Pradesh” in ascending order of cities. 

 
 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 7, 2022 | Page No. 24



 

 

 

Query 5: Compare the average, maximum, minimum “ozone” level in each major capital cities in ascending order of city names. 

 
 

 

 

VI. CONCLUSION 

Hive has become an easy learner tool for all programmers and non-programmers to perform various analysis on Hadoop. 

Anyone with little SQL knowledge can discover various insights on different sectors by using Hive’s various features like 

complex data types, different file format support, various data models etc. This paper will help the Hive users to gain deeper 

knowledge in various data models in Hive by making them understand how to analyse the datasets using these concepts. 

Comparison of each query in terms of total CPU time spent and total query execution time helps the user to conclude that 

simple managed table gives better performance than the table with partition bucketing for some analysis whereas for some other 

analysis simple partitioned table will give better performance. 

REFERENCES 

[1] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, et.al , Hive – A Petabyte Scale Data Warehouse Using Hadoop, Facebook Data 

Infrastructure Team 
[2] Anish Gupta, Manish K. Gupta, HIVE- Processing Structured Data in HADOOP, International Journal of Scientific & Engineering Research Vol. 8, 

Issue 6, June2017 

[3] Kadhar Basha J, Dr. M. Balamurugan, A Review on Hive and Pig, International Journal of Advanced Research in Basic Engineering Sciences and 
Technology, Vol. 3, Special Issue 39, May 2017 

[4] N. Puspalatha, P.Sudheer, Data Processing in Big Data by using Hive Interface, International Journal of Advance Research in Computer Science and 

Management Studies, Vol.3, Issue 4, April 2015. 
[5] Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner,et. al, Major Technical Advancements in Apache Hive, IGMOD’14, June 2014 

[6] J.Ramsingh, Dr.V.Bhuvaneswari, An Insight on Big Data Analytics Using PigScript, International Journal of Emerging Trends & Technology in 
Computer Science, Vol. 4, Issue 6, December 2015 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 7, 2022 | Page No. 25


