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1. Abstract: 
 

The work presented in this research paper constitutes a contribution to modeling and forecasting 

the monthly average egg prices of Hyderabad city using a time series models like Simple Exponential 

Smoothing methodology and Auto Regressive Integrated Moving Average model using Box-Jenkins 

methodology. The adequate model is selected according to five performance criteria; Akaike Information 

Criterion, Schwartz Bayesian Criterion, Mean Absolute Error, Mean Absolute and Percentage Error and 

Root Mean Square Error. The selected model is ARIMA(1,1,1)(0,1,1)12 and it is validated by another 

historical average egg prices information under the same conditions. The results obtained prove that the 

model could be utilized to forecast the average egg prices in Hyderabad city. 

Keywords: time series, auto regressive integrated moving average, simple exponential smoothing, error 

measures. 

2. Introduction: 
 

Eggs can be enjoyed as part of healthy and balanced diet. Eggs provide us with very high-quality 

protein that contains all nine essential amino acids in the right amounts needed by the body for optimum 

growth and maintenance. Now a day’s egg is eating by everybody and these are most nutritious food on 

the earth. It is price most reasonable among all the agriculture commodities. Egg price is generally 

fluctuating by yearly, monthly and daily also. Forecasting egg prices is a most complex phenomenon, 

mainly depends on market demand and supply. 

A historical data of monthly average egg prices of 100 units from January-2010 to September - 

2020 of Hyderabad city are collected from National Egg Co-ordination Committee (NECC). We have 

discussed various time series models in this paper like Box-Jenkins ARIMA, Simple Exponential 

Smoothing, Holt’s linear trend and Holt-Winters models for forecasting the monthly average egg prices. 

3. Literature Review: 
 

Ibina E.O., Igwe N.O., Oyah M.P. and Okonta C.A(2020), used ARIMA models for forecasting the stock 

market prices of Benne cement and Akshara Cement in Nigeria. Sudeshna Gosh(2017), proposed ARIMA 

models to forecast the cotton exports of India. Chukwudike C. Nwokike, Bright C. Offorha, Maxwell Obubu, 

Chukwuma B. Ugoala, Henry I. Ukomah (2020), used SARIMA models for forecasting the monthly rainfall in 

Nigeria. Kumar Manoj and Anand Madhu (2012), used Box-Jenkins ARIMA models to forecast sugarcane 
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production in India. Jamal Fattah, Latifa Ezzine, Zineb Aman ,Haj El Moussami, and Abdeslam Lachhab (2018), 

proposed modeling and forecasting the demand in a food company using ARIMA models. 
 

4. Methodology: 
 

4.1. Simple Exponential Smoothing: 
 

This method used past data points to forecast the future data. It gives more weight to recent 

values. Past values are smoothed like moving averages. 

St = α Yt + (1-α) St-1 ; 0< α <1 
 

Where α is the smoothing parameter 

St is the period t’s forecast value 

Yt is the actual value in time t 

St-1 is the forecast value for t-1 
 

Exponential smoothing is best for short term forecasts without trend or seasonality. A bigger α 

means more weight is given to recent past data points. Try different values of α and compute Root Mean 

Square Error (RMSE). Choose the α with lowest RMSE. 

4.2. Box-Jenkins ARIMA Model: 
 

An Auto Regressive Integrated Moving Average model is labeled as an ARIMA(p,d,q), Where in 

p - is the number of Auto regressive terms 

d - is number of differences 
 

q - is the number of moving average terms 
 

The general forecasting equation of ARMA(p,q) model is 
 

ŷt  = μ + ϕ1yt-1 +…+ ϕpyt-p - θ1et-1 -…- θqet-q 

 

The Box-Jenkins iterative approach is used for constructing the linear time series model. This approach is 

consisting of 5 steps. 

Step1: Stationary of the data 
 

Draw the time series graph and Auto Correlation Function graph to the given time series data. If 

the trend line is parallel to X-axis and variability is uniform in time series graph and ACF dies out for 

higher lags then the data is in stationary. If ACF does not dies out for higher lags then the data is in non 

stationary. 
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If the data is non-stationary convert it into stationary using appropriate transformation and 

successive differencing stabilizing variance and mean respectively. 

 

 

Step2: Model Identification 
 

Determine model parameters p and q using ACF and PACF graphs for the stationary data. 
 

1. If ACF dies out for higher lags and q-spikes in the ACF graph then the model is MA(q) model. 

2. If PACF dies out for higher lags and p-spikes in the PACF graph then the model is AR(p) model. 

3. If ACF and PACF both dies out for higher lags, q-spikes in ACF and p-spikes in PACF graphs 

then the model is ARMA(p,q) model. 

Step3: Estimation of model parameters 
 

Parameters of the model identified in step2 can be estimated using Lease Square Estimation or 

Maximum Likelihood Estimation methods. 

Step4: Diagnostic Checking or testing the model adequacy 
 

The Ljung-Box test or ACF plot for residuals used to check whether the model is 

adequate. This test is need for testing for the randomness of the residuals. 

If the model is adequate then go to step5 otherwise go to step2 and review the model. 
 

Step5: Forecasting future values 
 

Identify the best model using the error measures like Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and forecast the future values. 
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5. Results and Discussion: 

 

5.1. Analysis of data 
 

 

Figure1: Monthly Average egg retail prices in Hyderabad city 
 

Figure1, the time series plot of monthly Average egg retail prices of 100 eggs in Hyderabad city from Jan-

2010 to Sep-2020.   The data shows an increment in the prices from 2010 to 2020. Any time series data 

can be decomposed in to trend, seasonal, cyclic and random/irregular components. The additive 

decomposition of Monthly Average egg retail prices data is shown in figure2. 
 

 

Figure2: Monthly Average egg retail prices (top) and its three additive components 
 

The three components are shown separately in the bottom three panels of Figure2. These 

components can be added together to reconstruct the data shown in the top panel. Notice that the seasonal 

component changes slowly over time, so that any two consecutive 
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years have similar patterns, but years far apart may have different seasonal patterns. The 

remainder component shown in the panel is what is left over when the seasonal and trend-cycle 

components have been subtracted from the data. 
 

 

Figure3: Seasonal plot of monthly average egg retail prices in Hyderabad city 
 

In Seasonal plot the data are plotted against the individual seasons. A seasonal plot allows the 

underlying seasonal pattern to be seen more clearly, and is especially useful in identifying years in which 

the pattern changes. 
 

 

Figure4: Seasonal subseries plot of monthly average egg retail prices in Hyderabad city 
 

The horizontal lines indicate the means for each month. This form of plot enables the underlying seasonal 

pattern to be seen clearly, and also shows the changes in seasonality over time. It is especially useful in 

identifying changes within particular seasons. From figure3 and figure4, we can see that the average egg 
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retail prices are least in April month, moderate in June to October months and high in November, 

December months. 

We have divided whole data as training data (Jan-2010 to Sep-2018) and test data (Oct-2010 to 

Sep-2020). The model is to be developed on training data and validate on the test data. 

5.2. Fitting Simple Exponential Smoothing model: 
 

From the R-output, the fitted time series model from training data of Simple Exponential 

Smoothing method is 

St = 0.9501 * Yt + 0.0499 * St-1 

 

Where St is the period t’s forecast value 

Yt is the actual value in time t 

St-1 is the forecast value for t-1 

 
 

Figure5: Simple exponential smoothing method with forecasts 
 

R-output: 

Forecast method: Simple exponential smoothing 

Model Information: 
Simple exponential smoothing 

 
Call: 
ses(y = ts_train, h = 24) 

 
Smoothing parameters: 
alpha = 0.9501 

 
Initial states: 
l = 242.4408 

 
sigma: 37.2965 
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AIC AICc BIC 
1252.615 1252.853 1260.577 

 
 

5.3. Fitting ARIMA model: 
 

5.3.1. Stationarity of Data 
 

 

Figure6: Monthly retail prices of 100 eggs in Hyderabad from January-2010 to September-2018 
 

Augmented Dicky-Fuller Test: 
 

Null Hypothesis(H0): Data is not in Stationary at p-value. 

Alternative Hypothesis(H1): Data is in Stationary at p-value. 

R-output: 

Augmented Dickey-Fuller Test 

data: ts_train 

Dickey-Fuller = -3.3219, Lag order = 4, p-value = 0.07125 

alternative hypothesis: stationary 

 

Interpretation: Here p-value is 0.07125 which is higher than significance level 0.05, so there is no 

evidence for rejecting the null hypothesis. Therefore data is not in stationary. 

From figure6 and Augmented Dicky-Fuller test results, the data are clearly non-stationary with increasing 

trend and some seasonality. Apply differencing to covert the data into stationary form, so we will take 

seasonal difference. 
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Figure7: First order seasonally differenced hyderabad egg retail price data 
 

Augmented Dicky-Fuller Test for differenced data: 
 

Null Hypothesis(H0): Data is not in Stationary at p-value. 

Alternative Hypothesis(H1): Data is in Stationary at p-value. 

R-output: 

Augmented Dickey-Fuller Test 

 
data: diff(ts_train, lag = 12) 

Dickey-Fuller = -2.6795, Lag order = 4, p-value = 0.296 

alternative hypothesis: stationary 

 
 

Interpretation: Here p-value is 0.3303 which is higher than significance level 0.05, so there is no 

evidence for rejecting the null hypothesis. Therefore data is not in stationary. 

From figure-7 and Augmented Dicky-Fuller test results, the data are still appears to be non-stationary, so 

we take an additional non seasonal first difference shown in figure6. 

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 14



 

 

 

 
 

Figure8: First order non seasonal and first order seasonally differenced hyderabad egg retail price data 
 

Augmented Dicky-Fuller Test for differenced data: 
 

Null Hypothesis(H0): Data is not in Stationary at p-value. 

Alternative Hypothesis(H1): Data is in Stationary at p-value. 

R-output: 

Augmented Dickey-Fuller Test 

 

data: diff(diff(ts_train, lag = 12)) 

Dickey-Fuller = -5.4075, Lag order = 4, p-value = 0.01 

alternative hypothesis: stationary 

 

Interpretation: Here p-value is 0.01 which is lesser than significance level 0.05, so reject null 

hypothesis. Therefore first order non seasonal and first order seasonally differenced hyderabad egg retail 

price data is in stationary. 

5.3.2. Identification of the Model 
 

We have to find an appropriate ARIMA model based on ACF and PACF shown in 

figure3. The significant spike at lag1 in the ACF suggests a non-seasonal MA(1) component, and the 

significant spikes at lag12,lag13 in the ACF suggests a seasonal MA(2) component s. The significant 

spikes at lag1 in the PACF suggests a non seasonal AR(1) component, and in the significant spikes at 

lag4,lag12 in the PACF suggests a seasonal AR(2) component . The pattern in the ACF and PACF is not 

indicative of any simple model. 
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We have computed error measures for training and test data of adequate models (satisfies L-jung Box 

test) using all the possible combinations of the above parameters shown in table1, table2. 

 

 

 
S.No 

 
Model 

Error Measures L-jung Box 

RMSE MAE MAPE AIC BIC 
Q- 

Statistic 
P- 

Value 

1 ARIMA(1,0,1)(2,0,0)12 28.51 22.27 7.45 1022.34 1038.27 25.99 0.054 

2 ARIMA(1,0,1)(0,1,1)12 25.79 18.79 6.09 901.13 911.26 26.23 0.095 

3 ARIMA(1,0,1)(1,1,0)12 28.25 21.27 7.03 909.51 919.64 26.29 0.093 

4 ARIMA(1,1,1)(1,0,1)12 25.65 19.23 6.35 1000.91 1014.13 25.30 0.088 

5 ARIMA(1,1,1)(1,0,2)12 26.16 19.50 6.44 1000.29 1016.16 24.37 0.082 

6 ARIMA(1,1,1)(2,0,0)12 27.64 21.05 6.97 1004.77 1017.99 21.59 0.201 

7 ARIMA(1,1,1)(2,0,1)12 26.07 19.39 6.41 1000.08 1015.95 23.49 0.101 

8 ARIMA(1,1,1)(2,0,2)12 26.01 19.36 6.40 1002.06 1020.57 23.13 0.082 

9 ARIMA(1,1,1)(0,1,1)12 23.25 16.50 5.21 887.56 897.64 24.99 0.125 

10 ARIMA(1,1,1)(0,1,2)12 24.74 17.39 5.49 887.54 900.15 22.63 0.162 

11 ARIMA(1,1,1)(1,1,0)12 27.33 19.73 6.24 897.45 907.54 23.68 0.166 

12 ARIMA(1,1,1)(1,1,1)12 24.63 17.27 5.46 887.29 899.90 21.82 0.192 

13 ARIMA(1,1,1)(1,1,2)12 24.47 17.20 5.44 889.20 904.33 21.24 0.170 

14 ARIMA(1,1,1)(2,1,0)12 25.93 18.35 5.80 892.09 904.70 22.54 0.165 

15 ARIMA(1,1,1)(2,1,1)12 24.36 17.11 5.41 889.19 904.32 21.10 0.175 

16 ARIMA(1,1,1)(2,1,2)12 24.52 17.23 5.45 891.20 908.85 21.31 0.127 

17 Simple Exponential Smoothing 36.94 28.85 9.61 1252.62 1260.58 31.45 0.174 

Table1: Error Measures for various time series models applied to training data 
 

From table1, we can see that ARIMA(1,1,1)(0,1,1)12 has smallest error measures as RMSE(23.25), 

MAPE(5.21), AIC and BIC values as compared with other models. Therefore ARIMA(1,1,1)(0,1,1)12 is 

best model. 

5.3.3. Test set evaluation: 
 

We will compare the models fitted in on training data using a test set consisting of the last two 

years data. Thus we fit the models using data from Jan-2010 to May-2018, and forecast the retail prices 

for oct-2018 to sept-2020. The results are summarized in table2. 

 

 

 
S.No 

 

 
Model 

Error Measures 

RMSE MAE MAPE 

1 ARIMA(1,0,1)(0,1,1)12 38.64 25.78 7.39 

2  

ARIMA(1,1,1)(1,0,1)12 
36.29 28.14 7.47 

3  

ARIMA(1,1,1)(0,1,1)12 
37.47 29.68 7.76 
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4  

ARIMA(1,1,1)(2,1,1)12 
38.32 29.52 7.80 

5  

ARIMA(1,1,1)(1,1,2)12 
38.46 29.66 7.84 

6  

ARIMA(1,1,1)(2,1,2)12 
38.59 29.78 7.87 

7  

ARIMA(1,1,1)(2,0,2)12 
38.10 29.31 7.87 

8  

ARIMA(1,1,1)(1,1,1)12 
38.63 29.93 7.91 

9  

ARIMA(1,1,1)(2,0,1)12 
38.18 29.53 7.94 

10  

ARIMA(1,1,1)(0,1,2)12 
38.70 30.13 7.97 

11  

ARIMA(1,1,1)(1,0,2)12 
38.27 29.76 8.02 

12  

ARIMA(1,1,1)(2,0,0)12 
42.08 30.33 8.45 

13  

ARIMA(1,1,1)(2,1,0)12 
41.28 32.54 8.59 

14  

ARIMA(1,1,1)(1,1,0)12 
44.23 33.85 8.88 

15  

ARIMA(1,0,1)(1,1,0)12 
46.90 33.15 9.55 

16  

ARIMA(1,0,1)(2,0,0)12 
53.95 40.52 12.17 

17 
Simple Exponential 

Smoothing 
36.93 47.49 14.26 

Table2: Error Measures for various time series models applied to test data 
 

From tabble2, ARIMA(1,1,1)(0,1,1)12 has the second lowest error measures (RMSE,MAPE) on test data, 

so ARIMA(1,1,1)(0,1,1)12 is the best model for forecasting the monthly retail egg prices. 

5.3.4. Diagnostic checking or Residual Analysis: 
 

 

Figure9: Residual plots 
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From Figure9, We can observe that 
 

1. Year vs Residual plot, Residuals are identical with mean zero and constant variance 

2. Lag vs ACF plot, Residuals are uncorrelated 

3. Residuals vs count plot, Residuals follows normal distribution 
 

R-output: 
 

Series: ts_train 

ARIMA(1,1,1)(0,1,1)[12] 

 

Coefficients: 

ar1 ma1 sma1 

0.4278 -0.9112 -0.9988 

s.e. 0.1481 0.1061 0.9624 

 

sigma^2 estimated as 637.5: log likelihood=-439.78 

AIC=887.56 AICc=888.02 BIC=897.64 

 
 

The ARIMA(1,1,1)(0,1,1)12 model equation is 
 

(1- ϕ1B)(1-B12)(1-B)Yt = (1- θ1B)(1- ψ1B
12) et ; Where B is the back shift operator: BYt=Yt-1 

The Fitted ARIMA(1,1,1)(0,1,1)12 model equation is 

(1- (0.4278)B)(1-B12)(1-B)Yt = (1- (-0.9112)B)(1- (-0.9988) B12) et 

6. Conclusion: 
 

The point forecasts of 24 months, 80% and 90% confidence interval values of point forecasts obtained 

using Seasonal ARIMA models are presented below. 
 

 

Figure10: ARIMA model with forecasts 
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Time 
Point 

Forecast 
Lo 80 Hi 80 Lo 95 Hi 95 

Oct-20 438.37 404.44 472.30 386.48 490.26 

Nov-20 452.56 414.36 490.76 394.14 510.98 

Dec-20 .445.11 405.48 484.74 384.50 505.71 

Jan-21 433.50 393.20 473.80 371.87 495.13 

Feb-21 396.29 355.52 437.07 333.93 458.65 

Mar-21 365.55 324.39 406.72 302.59 428.51 

Apr-21 345.97 304.45 387.49 282.47 409.47 

May-21 375.71 333.85 417.57 311.69 439.73 

Jun-21 419.45 377.26 461.64 354.92 483.98 

Jul-21 406.98 364.46 449.49 341.95 472.00 

Aug-21 387.83 344.98 430.67 322.31 453.35 

Sep-21 412.27 369.11 455.44 346.26 478.29 

Oct-21 420.76 376.79 464.73 353.51 488.01 

Nov-21 454.13 409.61 498.65 386.05 522.21 

Dec-21 454.88 409.92 499.85 386.11 523.65 

Jan-22 446.79 401.43 492.14 377.43 516.15 

Feb-22 411.08 365.36 456.80 341.16 481.00 

Mar-22 380.98 334.91 427.05 310.52 451.44 

Apr-22 361.67 315.25 408.09 290.68 432.66 

May-22 391.53 344.76 438.29 320.01 463.05 

Jun-22 435.32 388.21 482.43 363.28 507.36 

Jul-22 422.87 375.42 470.31 350.30 495.43 

Aug-22 403.73 355.94 451.51 330.65 476.81 

Sep-22 428.18 380.06 476.30 354.58 501.78 

Table: 3 Forecasts of monthly average egg prices in Hyderabad city using Seasonal ARIMA model 
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