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Abstract – Two versions of a perimeter-based algorithm for the computation of the Euler number of a hexagonal binary image are 

devised. These new versions are compared experimentally to the original (definition based) algorithm. One of the new versions is 

shown to outperform the other two methods. 
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I. INTRODUCTION 

Since Golay [1], researchers have made various attempts to represent digital images by using a 

hexagonal structure. The hexagonal grid has important advantages: small quantization error, equidistant 

neighbours, consistent connectivity, high symmetry, good angular resolution. However, it also leads to 

some difficulties: a lack of practical hardware for capturing and displaying hexagonal images, and a lack 

of simple storage and addressing schemes. For details, see [2]. 
A hexagonal binary digital image can be defined as a subset of an array of 0/1 integer values. In more 

detail, it can be defined as a  function P : Z 2  Hex → 0,1 , where Z 2 denotes the integer grid in the 

plane and Hex = (i, j ) Z 2 | i + j even . We choose a coordinate system in Z 
2
 such that the first axis 

points downward (the row axis) and the second axis points to the right (the column axis). As usual, an 

element (i, j )  Z 
2

 can be regarded as a point (placed at row i and column j ), or as a (usually regular) 

hexagon placed with its centre at array position (i, j ) ; such an element is called a (hexagonal) pixel. If 

P (i, j ) = 0 , the pixel (i, j ) is called a background point; otherwise, if P (i, j ) = 1 , the pixel (i, j ) is called 

a foreground point. We assume the number of 1-pixels to be finite; we can therefore restrict each image to 

a digital rectangle. We also assume that the two bottom rows, as well as the leftmost and rightmost 

columns, completely belong to the background. We distinguish between array coordinates and the usual 

cartesian coordinates. 

There are many ways to orient the pixels of the image, but only two of them are frequently used: (1) the 

H (horizontal) orientation, where each pixel has two horizontal sides, and (2) the V (vertical) orientation, 

where each pixel has two vertical sides. We always choose the pixels as having unit length sides. 

In the first case (the H orientation), the pixels are placed at cartesian coordinates ( x, y ) , where 

x = 
  

 i , 
  y = (3

2 ) j , and i + j is even. Some pixels sit on even rows i = 2a and on even columns 

j = 2b ; their coordinates are x = ( 3 ) a , y = 3b ; the other pixels sit on odd rows i = 2a +1 and odd 

columns j = 2b +1; their coordinates are 
 

 
  

3 ) a , y = (3
2 )+  3 b . 

In the second case (the V orientation), the pixels are placed at cartesian coordinates ( x, y ) , where 

x = (3
2 ) i , y = 

  
 j , and i + j 

  
is even. Some pixels sit on even rows i = 2a and on even columns 
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j = 2b ; their coordinates are x = 3 a , y = ( 3 ) b ; the other pixels sit on odd rows i = 2a +1 and odd 

columns j = 2b +1; their coordinates are x = (3
2 )+  3 a , 

  
3  b . 

  
A more detailed description can be found in [3] and [4]. 

 

 
II. BASIC DEFINITIONS 

We start with the H orientation. Given a hexagonal binary digital image P , the set of all pixels and their 

adjacencies define a graph Himgr (P) , the H image graph of P : 

its vertices are single pixels  , represented as  X  ; 

 
its edges are vertical pairs , and tilted pairs and , represented as  X  ,  X  ,  X  ,  X   X   X  

respectively; 

        

 

its faces are triples of pixels , , represented as  X  
 X  , 

 X   
X 

 , respectively. 
    

 
Each X denotes either of the values 0 or 1. 

 X   X  

The subgraph Hfggr (P) of Himgr (P) that consists of all pixels of type 1 , all edges of type 1 ,      1 , 1 1   

 
 1   

 
     1 

 
1   

     

  , and all faces of type 
1  ,    1

 , will be called the H foreground graph of P . 
  1     

     1 1      

In the case of V orientation, the set of all pixels and their adjacencies define a graph Vimgr (P) , the V 

image graph of P : 

its vertices are single pixels , represented as  X  ; 

 
its edges are horizontal pairs , and tilted pairs and , represented as X    X  ,  X

  ,  X  ,  X        X  
      

respectively; 

its faces are triples of pixels   ,  , represented as  X  ,  X X  , respectively. 
 X X   X  

 

Here also, each X denotes either of the values 0 or 1. 

    

The subgraph Vfggr ( P ) of Vimgr (P) that consists of all pixels of type 1 , all edges of type 1 1 , 1  
 

  
  1 , and all faces of type      1    , 1 1 , will be called the V foreground graph of P . 
1   1 1   1    
      

In the following we will denote by # (P(H ); ) the number of occurrences of the local pattern  in 

the graph Himgr (P) ; we will denote by # (P(V ); ) the number of occurrences of the local pattern  

in the graph Vimgr (P) . 

, 
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e (P ) = # (P ;  

2 

; 

 

0 1 2 1 2 

0 

1 

2 

1   

2   

 1  

1 1 

1 1 

  

1 

 

 

1  

1 

The Euler number (Euler characteristic in mathematics) is a very important topological invariant in the 

study of binary images. Many methods have been devised for its computation. We only mention here the 

paper [8], were a method was given that also works on the hexagonal grid. 

The H oriented hexagonal Euler number is defined as 

 

 
where 

 (P(H ) ) = v(P(H ) 
) − e (P(H ) 

) − e (P(H ) 
) − e (P(H ) 

) + f (P(H ) 
) + f (P(H ) 

) (1H) 

v (P(H ) ) = # (P(H ) 
; 1 )  (the number of vertices in  Hfggr (P) ) 

e (P(H ) 
) = # (P(H ) 

; 
1  ) (the number of vertical edges in  Hfggr (P) ) 

0 

(H ) (H ) 
1 

1  ) 
(the number of right tilted edges in Hfggr (P) ) 

e  (P(H ) 
) = # (P(H ) 

; 
1
 1  

) (the number of left tilted edges in Hfggr (P) ) 

f (P(H ) ) = 
 

# P 
(H ) 


 
1 

1  
 


 
 

(the number of left faces in Hfggr (P) )      1 

    

f (P(H ) ) = 
 

#  P (H ) ; 
1     

 
(the number of right faces in Hfggr (P) ) 1   

    

Similarly, the V oriented hexagonal Euler number is defined as 

 (P(V ) ) = v(P(V ) 
) − e (P(V ) 

) − e (P(V ) 
) − e  (P(V ) 

) + f (P(V ) 
) + f 

 
(P(V ) 

) 

 
 

(1V) 
 

where 

v (P
(V ) ) = # (P

(V ) 
; 1 ) 

e (P(V ) 
) = # (P(V ) 

;1  1) 

 
(the number of vertices in Vfggr( P ) ) 

(the number of horizontal edges in Vfggr ( P ) ) 

e (P(V ) 
) = # (P(V ) 

; 
1
 1  

) (the number of downward tilted edges in Vfggr ( P ) ) 

e (P(V ) 
) = # (P(V ) 

;  1  ) (the number of upward tilted edges in Vfggr ( P ) ) 

f1 (P ) = # (P ;   ) (the number of top faces in Vfggr ( P ) ) 

f2 (P ) = # (P ;      
1     

 ) (the number of bottom faces in Vfggr ( P ) ) 

See also the references [5], p.186, and [6], pp.79-82. 

 

III. THE PERIMETER 

Given a binary digital image P , the (total) perimeter of its foreground is defined as the length of the 

boundary. For the H oriented version 

 

where 

per (P(H ) ) = nww(P(H ) 
) + sww(P(H ) 

) + south(P(H ) 
) + see(P(H ) 

) + nee(P(H ) 
) + north(P (H ) 

) (2H) 

nww(P(H ) 
) = # (P(H ) 

;  
0   

1  
)  (the number of edges that cross the north-west-west boundary) 

sww(P(H ) 
) = # (P(H ) 

;  0 
1  ) (the number of edges that cross the south-west-west boundary) 

(V ) (V ) 

(V ) (V ) 

1 
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0 1 2 

0 1 2 

 

south(P(H ) 
) = # (P(H ) 

; 
1  ) 

see(P(H ) 
) = # (P(H ) 

; 
1    

0 
) 

 

(the number of edges that cross the southern boundary) 

(the number of edges that cross the south-east-east boundary) 

nee(P(H ) 
) = # (P(H ) 

; 1 0 ) (the number of edges that cross the north-east-east boundary) 

north(P(H ) 
) = # (P(H ) 

;  
0 ) (the number of edges that cross the northern boundary) 

For the V oriented version 

per (P(V ) ) = west(P(V ) 
) + ssw(P(V ) 

) + sse( P(V ) 
) + east( P(V ) 

) + nne( P(V ) 
) + nnw( P(V ) 

) 

 

(2V) 

where 

west(P(V ) 
) = # (P(V ) 

;0  1) 
 

(the number of edges that cross the western boundary) 

ssw(P(V ) 
) = # (P(V ) 

;  0 1  ) (the number of edges that cross the south-south-west boundary) 

sse(P(V ) 
) = # (P(V ) 

; 
1    

0 
) 

east(P(V ) 
) = # (P(V ) 

;1  0) 

(the number of edges that cross the south-south-east boundary) 

(the number of edges that cross the eastern boundary) 

nne(P(V ) 
) = # (P(V ) 

; 1 0 ) (the number of edges that cross the north-north-east boundary) 

nnw(P(V ) 
) = # (P(V ) 

;  
0   

1  
) (the number of edges that cross the north-north-west boundary) 

The boundary of the image (foreground) consists of connected components (boundaries of objects and 

boundaries of holes). Our convention is that the boundary of an object is traversed in counterclockwise 

order; the boundary of a hole is traversed in clockwise order. Each boundary component changes direction 

at each unit step (this is a feature of the hexagonal grid). 

A concept, similar to that of perimeter, was defined in [7]; it is called the contact perimeter, but it turns 

out to be the number of edges in the image foreground: 

- in the  H  oriented version,   cper (P(H ) ) = e (P(H ) 
) + e (P(H ) 

) + e  (P(H ) 
) ; 

- in the V  oriented version, cper (P(V ) ) = e (P(V ) 
) + e (P(V ) 

) + e  (P(V ) 
) . 

The two "perimeters" are related by the following formula (in the two versions), as shown in [7] (see also 

[8], [10], [11]) 

2cper(P(H ) 
) + per (P(H ) ) = 6v(P(H ) 

) 

2cper(P(V ) 
) + per (P(V ) ) = 6v(P(V ) 

) 

(3H) 

 
(3V) 

 

We provide here a shorter proof. Each foreground pixel p has six neighbors which define six edges in the 

foreground or on the boundary. In all, there are 6v(P
( H ) 

) edges counted in the H version, or 6v(P
(V ) 

) 

edges counted in the V version. Each foreground edge appears twice, each boundary edge only once. All 

foreground edges and all boundary edges are covered. 

From formulas (1H) and (3H) we get 
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1 2 

1 2 

1 2 

0 1 2 1 2 

1 2 

1 2 

1 2 

 (P(H ) ) = v(P(H ) ) − (e (P(H ) ) + e (P(H ) ) + e (P(H ) ))+ f (P(H ) ) + f (P(H ) ) 

 

 

 
or 

 (P(H ) ) = −2v(P(H ) ) 

= v(P(H ) ) − (3v(P(H ) ) − per(P(H ) ) / 2)+ f (P(H ) ) + f (P(H ) ) 

= −2v(P(H ) ) + per(P(H ) ) / 2 + f (P(H ) ) + f (P(H ) ) 

(4H) 

+ (nww(P(H ) ) + sww(P(H ) ) + south(P(H ) ) + see(P(H ) ) + nee(P(H ) ) + north(P(H ) ))/  2 

+ f (P(H ) ) + f (P(H ) ) 

Similarly, from formulas (1V) and (3V) we get 

(5H) 

 (P(V ) ) = v(P(V ) ) − (e (P(V ) ) + e (P(V ) ) + e (P(V ) ))+ f (P(V ) ) + f (P(V ) ) 

 

 

 
 

or 

 (P(V ) ) = −2v(P(V ) ) 

= v(P(V ) ) − (3v(P(V ) ) − per(P(V ) ) / 2)+  f (P(V ) ) + f (P(V ) ) 

= −2v(P(V ) ) + per(P(V ) ) / 2 + f (P(V ) ) + f (P(V ) ) 

(4V) 

+ (west(P(V ) ) + ssw(P(V ) ) + sse(P(V ) ) + east(P(V ) ) + nne(P(V )) + nnw(P(V )) )/  2 

+ f (P(V ) ) + f (P(V ) ) 

A similar result for binary images on the square grid was derived in [10] and [11] (see also [12]). 

(5V) 

 

 

In the next section we modify formulas (5H) and (5V) in order to achieve an improved perimeter-based 

algorithm for the computation of the Euler number. 

 

 

 

IV. THE SEMI-PERIMETER 

We trivially define the semi-perimeter of the foreground as 

 
semiper(P

(H ) 
) = per(P

(H ) 
) / 2 

 
 

and 

semiper(P
(V ) 

) = per(P
(V ) 

) / 2 . We first prove some simple relations for the semi-perimeter. 

In the H version, we show that 

nee(P
(H ) 

) = sww(P
(H ) 

) ; north(P
(H ) 

) = south(P
(H ) 

) ; nww(P
(H ) 

) = see(P
(H ) 

) . 

Proof: To simplify the notations, we denote 

a = north(P
(H ) 

) , b = nww(P
( H ) 

) , c = sww(P
( H ) 

) , d = south(P
(H ) 

) , e = see(P
(H ) 

) , f = nee(P
( H ) 

) . 

Take a vertical sweepline. On each column position, this line cuts the foreground on a number of 0, 1, or 
more segments. Each of these segments starts on a northern boundary side and ends on a southern 

boundary side. Each boundary side is cut once by the sweepline. As a result, a = d . Similarly, using a left 

tilted sweepline, we get b = e ; using a right tilted sweepline, we get c = f . 

In the V version, we get 
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1 2 

1 2 

1 2 

1 2 

nnw(P
(V ) 

) = sse(P
(V ) 

) ; west(P
(V ) 

) = east(P
(V ) 

) ; ssw(P
(V ) 

) = nne(P
(V ) 

) . 

A similar proof applies here too. 
 

Therefore, 

and 

semiper (P(H ) ) = sww(P(H ) 
) + south(P(H ) 

) + see(P(H ) 
) 

semiper (P(V ) ) = sse(P(V ) 
) + east(P(V ) 

) + nne(P(V ) 
) 

 

(6H) 

 

(6V) 

These formulas allow us to devise a third algorithm, whose implementation will be compared to the 

previous two. The formulas we get are 

 (P(H ) ) = −2v(P(H ) 
) + semiper(P(H ) 

) + f (P(H ) 
) + f  (P(H ) 

) 

 (P(V ) ) = −2v(P(V ) 
) + semiper(P(V ) 

) + f (P(V ) 
) + f  (P(V ) 

) 

or 

 (P(H ) ) = −2v(P(H ) 
) + sww(P(H ) 

) + south(P(H ) 
) + see(P(H ) 

) + f (P(H ) 
) + f  (P(H ) 

) 

 (P(V ) ) = −2v(P(V ) 
) + sse(P(V ) 

) + east(P(V ) 
) + nne(P(V ) 

) + f (P(V ) 
) + f  (P(V ) 

) 

(7H) 

 
(7V) 

 

 

(8H) 

 
(8V) 

 

A similar result for binary images on the square grid was derived in [12]. 

 

V. THE ALGORITHMS 

The three algorithms are implemented by three functions written in the C programming language. We 

do this for the H orientation version only; the V orientation version is expected to return similar results. 

The function euler_hexa_def is based on formula (1H); the function euler_hexa_perim on formula (5H); 

the function euler_hexa_sperim on formula (8H). 

 
 

Algorithm euler_hexa_def: 

 

int euler_hexa_def (int nr, int nc, u_char (*pict)[nc]) 

{ 

int v = 0, e = 0, f = 0; int par = 0; 

for (int i = 0; i < nr – 2; i++, par = 1 - par) 

for (int j = 2 - par; j < nc – 1; j+=2) 

if (pict [i][j]) 
{ v++;   

if (pict [i+2][j]) 

{ e++; 
 if (pict [i+1][j-1]) {e++; f++; } 
 if (pict [i+1][j+1]) {e++; f++; } 

}    

else    
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{ 

if (pict [i+1][j-1]) e++; 

if (pict [i+1][j+1]) e++; 

} 

} 

return v – e + f; 

} 
 

 

Algorithm euler_hexa_perim: 

 

int euler_hexa_perim (int nr, int nc, u_char (*pict)[nc]) 

{ 

int v = 0, p = 0, f = 0; int par = 0; 

for (int i = 0; i < nr – 2; i++, par = 1 - par) 

for (int j = 2 - par; j < nc – 1; j+=2) 

if (pict [i][j]) 

{ v++; 

if (pict [i+2][j]) 

{ 

 

 

 

} 

else 

if (pict [i+1][j-1]) f++; 

else p++; 

if (pict [i+1][j+1]) f++; 

else p++; 

{ p++; 

if (!pict [i+1][j-1]) p++; 

if (!pict [i+1][j+1]) p++; 

} 

} 

else 

{ if (pict [i+2][j]) p++; 

if (pict [i+1][j-1]) p++; 

If (pict [i+1][j+1]) p++; 

} 

return -2*v + p / 2 + f; 

} 
 

 

Algorithm euler_hexa_sperim: 

 

int euler_hexa_perim (int nr, int nc, u_char (*pict)[nc]) 

{ 

int v = 0, sp = 0, f = 0; int par = 0; 

for (int i = 0; i < nr – 2; i++, par = 1 - par) 

for (int j = 2 - par; j < nc – 1; j+=2) 

if (pict [i][j]) 
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{ v++; 

if (pict [i+2][j]) 

{ 

 

 

 

} 

else 

if (pict [i+1][j-1]) f++; 

else sp++; 

if (pict [i+1][j+1]) f++; 

else sp++; 

{ sp++; 

if (!pict [i+1][j-1]) sp++; 

if (!pict [i+1][j+1]) sp++; 

} 

} 

return -2*v + sp + f; 

} 
 

 
 

VI. EXPERIMENTAL RESULTS 

 

Randomly generated artificial binary images, some of size 64X64 and some of size 128X64, were input 

to each of the three algorithm versions. The following two tables show the average number comp of 

comparison operations and the average number incr of increment operations (increments of indices are not 

counted). 

IMAGES OF SIZE 64X64 IMAGES OF SIZE 128X128 
 

version comp incr version comp incr 

def 20445 19864 def 37480 33726 
perim 31752 14877 perim 64008 24909 

semi-perim 20445 12377 semi-perim 37480 20855 

 

 

VII. CONCLUSIONS 

As we can see, the results are very similar to those obtained in [12] for binary images on the square grid. 

The perimeter based algorithm version euler_hexa_perim is less efficient than the definition based version 

euler_hexa_def. However, the semi-perimeter based version euler_hexa_sperim is the most efficient of all 

three. 
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