

3
2

3
2

3
2

 

x = + (

 

 

Computation of the Euler Number of a Hexagonal Binary

Image Using the Perimeter
Jack Weinstein

Department of Mathematics, University of Haifa, Israel

jack-weinstein@hotmail.com

Abstract – Two versions of a perimeter-based algorithm for the computation of the Euler number of a hexagonal binary image are

devised. These new versions are compared experimentally to the original (definition based) algorithm. One of the new versions is

shown to outperform the other two methods.

Keywords — Euler number; hexagonal binary digital image; perimeter; semi-perimeter; algorithm performance

I. INTRODUCTION

Since Golay [1], researchers have made various attempts to represent digital images by using a

hexagonal structure. The hexagonal grid has important advantages: small quantization error, equidistant

neighbours, consistent connectivity, high symmetry, good angular resolution. However, it also leads to

some difficulties: a lack of practical hardware for capturing and displaying hexagonal images, and a lack

of simple storage and addressing schemes. For details, see [2].
A hexagonal binary digital image can be defined as a subset of an array of 0/1 integer values. In more

detail, it can be defined as a function P : Z 2  Hex → 0,1 , where Z 2 denotes the integer grid in the

plane and Hex = (i, j) Z 2 | i + j even . We choose a coordinate system in Z
2
 such that the first axis

points downward (the row axis) and the second axis points to the right (the column axis). As usual, an

element (i, j)  Z
2

 can be regarded as a point (placed at row i and column j), or as a (usually regular)

hexagon placed with its centre at array position (i, j) ; such an element is called a (hexagonal) pixel. If

P (i, j) = 0 , the pixel (i, j) is called a background point; otherwise, if P (i, j) = 1 , the pixel (i, j) is called

a foreground point. We assume the number of 1-pixels to be finite; we can therefore restrict each image to

a digital rectangle. We also assume that the two bottom rows, as well as the leftmost and rightmost

columns, completely belong to the background. We distinguish between array coordinates and the usual

cartesian coordinates.

There are many ways to orient the pixels of the image, but only two of them are frequently used: (1) the

H (horizontal) orientation, where each pixel has two horizontal sides, and (2) the V (vertical) orientation,

where each pixel has two vertical sides. We always choose the pixels as having unit length sides.

In the first case (the H orientation), the pixels are placed at cartesian coordinates (x, y) , where

x =
 

 i ,
  y = (3

2) j , and i + j is even. Some pixels sit on even rows i = 2a and on even columns

j = 2b ; their coordinates are x = (3) a , y = 3b ; the other pixels sit on odd rows i = 2a +1 and odd

columns j = 2b +1; their coordinates are
 

 

3) a , y = (3
2)+ 3 b .

In the second case (the V orientation), the pixels are placed at cartesian coordinates (x, y) , where

x = (3
2) i , y =

 
 j , and i + j

 
is even. Some pixels sit on even rows i = 2a and on even columns

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 62

mailto:jack-weinstein@hotmail.com

3
2 y = + (



 )

1

j = 2b ; their coordinates are x = 3 a , y = (3) b ; the other pixels sit on odd rows i = 2a +1 and odd

columns j = 2b +1; their coordinates are x = (3
2)+ 3 a ,

 
3  b .

 
A more detailed description can be found in [3] and [4].

II. BASIC DEFINITIONS

We start with the H orientation. Given a hexagonal binary digital image P , the set of all pixels and their

adjacencies define a graph Himgr (P) , the H image graph of P :

its vertices are single pixels , represented as  X  ;

its edges are vertical pairs , and tilted pairs and , represented as  X  ,  X  ,  X  ,  X   X   X 

respectively;

     

its faces are triples of pixels , , represented as  X 
 X  ,

 X  
X

 , respectively.
   

Each X denotes either of the values 0 or 1.

 X   X 

The subgraph Hfggr (P) of Himgr (P) that consists of all pixels of type 1 , all edges of type 1 ,  1 , 1 1 

 1 

 1

1 

   

  , and all faces of type 
1  ,  1

 , will be called the H foreground graph of P .
 1    

 1 1 

In the case of V orientation, the set of all pixels and their adjacencies define a graph Vimgr (P) , the V

image graph of P :

its vertices are single pixels , represented as  X  ;

its edges are horizontal pairs , and tilted pairs and , represented as X X  ,  X

  ,  X  ,  X   X 
   

respectively;

its faces are triples of pixels , , represented as  X  ,  X X  , respectively.
 X X   X 

Here also, each X denotes either of the values 0 or 1.

   

The subgraph Vfggr (P) of Vimgr (P) that consists of all pixels of type 1 , all edges of type 1 1 , 1 

 
 1 , and all faces of type  1  , 1 1 , will be called the V foreground graph of P .
1  1 1  1 
     

In the following we will denote by # (P(H);) the number of occurrences of the local pattern  in

the graph Himgr (P) ; we will denote by # (P(V);) the number of occurrences of the local pattern 

in the graph Vimgr (P) .

,

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 63

0 1 2 1 2

e (P) = # (P ; 

2

;



0 1 2 1 2

0

1

2

1  

2  

 1 

1 1

1 1

 

1





1 

1

The Euler number (Euler characteristic in mathematics) is a very important topological invariant in the

study of binary images. Many methods have been devised for its computation. We only mention here the

paper [8], were a method was given that also works on the hexagonal grid.

The H oriented hexagonal Euler number is defined as

where

 (P(H)) = v(P(H)
) − e (P(H)

) − e (P(H)
) − e (P(H)

) + f (P(H)
) + f (P(H)

) (1H)

v (P(H)) = # (P(H)
; 1) (the number of vertices in Hfggr (P))

e (P(H)
) = # (P(H)

; 
1 ) (the number of vertical edges in Hfggr (P))

0

(H) (H)
1

1 )
(the number of right tilted edges in Hfggr (P))

e (P(H)
) = # (P(H)

; 
1
 1

) (the number of left tilted edges in Hfggr (P))

f (P(H)) =


# P
(H)



1

1 




(the number of left faces in Hfggr (P))  1

   

f (P(H)) =


 P (H) ;
1  

(the number of right faces in Hfggr (P)) 1 

   

Similarly, the V oriented hexagonal Euler number is defined as

 (P(V)) = v(P(V)
) − e (P(V)

) − e (P(V)
) − e (P(V)

) + f (P(V)
) + f

(P(V)

)

(1V)

where

v (P
(V)) = # (P

(V)
; 1)

e (P(V)
) = # (P(V)

;1 1)

(the number of vertices in Vfggr(P))

(the number of horizontal edges in Vfggr (P))

e (P(V)
) = # (P(V)

; 
1
 1

) (the number of downward tilted edges in Vfggr (P))

e (P(V)
) = # (P(V)

;  1 ) (the number of upward tilted edges in Vfggr (P))

f1 (P) = # (P ;  ) (the number of top faces in Vfggr (P))

f2 (P) = # (P ; 
1

) (the number of bottom faces in Vfggr (P))

See also the references [5], p.186, and [6], pp.79-82.

III. THE PERIMETER

Given a binary digital image P , the (total) perimeter of its foreground is defined as the length of the

boundary. For the H oriented version

where

per (P(H)) = nww(P(H)
) + sww(P(H)

) + south(P(H)
) + see(P(H)

) + nee(P(H)
) + north(P (H)

) (2H)

nww(P(H)
) = # (P(H)

; 
0

1
) (the number of edges that cross the north-west-west boundary)

sww(P(H)
) = # (P(H)

;  0
1 ) (the number of edges that cross the south-west-west boundary)

(V) (V)

(V) (V)

1

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 64

0

1

0 1 2

0 1 2

south(P(H)
) = # (P(H)

; 
1 )

see(P(H)
) = # (P(H)

; 
1

0
)

(the number of edges that cross the southern boundary)

(the number of edges that cross the south-east-east boundary)

nee(P(H)
) = # (P(H)

; 1 0) (the number of edges that cross the north-east-east boundary)

north(P(H)
) = # (P(H)

; 
0 ) (the number of edges that cross the northern boundary)

For the V oriented version

per (P(V)) = west(P(V)
) + ssw(P(V)

) + sse(P(V)
) + east(P(V)

) + nne(P(V)
) + nnw(P(V)

)

(2V)

where

west(P(V)
) = # (P(V)

;0 1)

(the number of edges that cross the western boundary)

ssw(P(V)
) = # (P(V)

;  0 1 ) (the number of edges that cross the south-south-west boundary)

sse(P(V)
) = # (P(V)

; 
1

0
)

east(P(V)
) = # (P(V)

;1 0)

(the number of edges that cross the south-south-east boundary)

(the number of edges that cross the eastern boundary)

nne(P(V)
) = # (P(V)

; 1 0 ) (the number of edges that cross the north-north-east boundary)

nnw(P(V)
) = # (P(V)

; 
0

1
) (the number of edges that cross the north-north-west boundary)

The boundary of the image (foreground) consists of connected components (boundaries of objects and

boundaries of holes). Our convention is that the boundary of an object is traversed in counterclockwise

order; the boundary of a hole is traversed in clockwise order. Each boundary component changes direction

at each unit step (this is a feature of the hexagonal grid).

A concept, similar to that of perimeter, was defined in [7]; it is called the contact perimeter, but it turns

out to be the number of edges in the image foreground:

- in the H oriented version, cper (P(H)) = e (P(H)
) + e (P(H)

) + e (P(H)
) ;

- in the V oriented version, cper (P(V)) = e (P(V)
) + e (P(V)

) + e (P(V)
) .

The two "perimeters" are related by the following formula (in the two versions), as shown in [7] (see also

[8], [10], [11])

2cper(P(H)
) + per (P(H)) = 6v(P(H)

)

2cper(P(V)
) + per (P(V)) = 6v(P(V)

)

(3H)

(3V)

We provide here a shorter proof. Each foreground pixel p has six neighbors which define six edges in the

foreground or on the boundary. In all, there are 6v(P
(H)

) edges counted in the H version, or 6v(P
(V)

)

edges counted in the V version. Each foreground edge appears twice, each boundary edge only once. All

foreground edges and all boundary edges are covered.

From formulas (1H) and (3H) we get

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 65

0 1 2 1 2

1 2

1 2

1 2

0 1 2 1 2

1 2

1 2

1 2

 (P(H)) = v(P(H)) − (e (P(H)) + e (P(H)) + e (P(H)))+ f (P(H)) + f (P(H))

or

 (P(H)) = −2v(P(H))

= v(P(H)) − (3v(P(H)) − per(P(H)) / 2)+ f (P(H)) + f (P(H))

= −2v(P(H)) + per(P(H)) / 2 + f (P(H)) + f (P(H))

(4H)

+ (nww(P(H)) + sww(P(H)) + south(P(H)) + see(P(H)) + nee(P(H)) + north(P(H)))/ 2

+ f (P(H)) + f (P(H))

Similarly, from formulas (1V) and (3V) we get

(5H)

 (P(V)) = v(P(V)) − (e (P(V)) + e (P(V)) + e (P(V)))+ f (P(V)) + f (P(V))

or

 (P(V)) = −2v(P(V))

= v(P(V)) − (3v(P(V)) − per(P(V)) / 2)+ f (P(V)) + f (P(V))

= −2v(P(V)) + per(P(V)) / 2 + f (P(V)) + f (P(V))

(4V)

+ (west(P(V)) + ssw(P(V)) + sse(P(V)) + east(P(V)) + nne(P(V)) + nnw(P(V)))/ 2

+ f (P(V)) + f (P(V))

A similar result for binary images on the square grid was derived in [10] and [11] (see also [12]).

(5V)

In the next section we modify formulas (5H) and (5V) in order to achieve an improved perimeter-based

algorithm for the computation of the Euler number.

IV. THE SEMI-PERIMETER

We trivially define the semi-perimeter of the foreground as

semiper(P

(H)
) = per(P

(H)
) / 2

and

semiper(P
(V)

) = per(P
(V)

) / 2 . We first prove some simple relations for the semi-perimeter.

In the H version, we show that

nee(P
(H)

) = sww(P
(H)

) ; north(P
(H)

) = south(P
(H)

) ; nww(P
(H)

) = see(P
(H)

) .

Proof: To simplify the notations, we denote

a = north(P
(H)

) , b = nww(P
(H)

) , c = sww(P
(H)

) , d = south(P
(H)

) , e = see(P
(H)

) , f = nee(P
(H)

) .

Take a vertical sweepline. On each column position, this line cuts the foreground on a number of 0, 1, or
more segments. Each of these segments starts on a northern boundary side and ends on a southern

boundary side. Each boundary side is cut once by the sweepline. As a result, a = d . Similarly, using a left

tilted sweepline, we get b = e ; using a right tilted sweepline, we get c = f .

In the V version, we get

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 66

1 2

1 2

1 2

1 2

nnw(P
(V)

) = sse(P
(V)

) ; west(P
(V)

) = east(P
(V)

) ; ssw(P
(V)

) = nne(P
(V)

) .

A similar proof applies here too.

Therefore,

and

semiper (P(H)) = sww(P(H)
) + south(P(H)

) + see(P(H)
)

semiper (P(V)) = sse(P(V)
) + east(P(V)

) + nne(P(V)
)

(6H)

(6V)

These formulas allow us to devise a third algorithm, whose implementation will be compared to the

previous two. The formulas we get are

 (P(H)) = −2v(P(H)
) + semiper(P(H)

) + f (P(H)
) + f (P(H)

)

 (P(V)) = −2v(P(V)
) + semiper(P(V)

) + f (P(V)
) + f (P(V)

)

or

 (P(H)) = −2v(P(H)
) + sww(P(H)

) + south(P(H)
) + see(P(H)

) + f (P(H)
) + f (P(H)

)

 (P(V)) = −2v(P(V)
) + sse(P(V)

) + east(P(V)
) + nne(P(V)

) + f (P(V)
) + f (P(V)

)

(7H)

(7V)

(8H)

(8V)

A similar result for binary images on the square grid was derived in [12].

V. THE ALGORITHMS

The three algorithms are implemented by three functions written in the C programming language. We

do this for the H orientation version only; the V orientation version is expected to return similar results.

The function euler_hexa_def is based on formula (1H); the function euler_hexa_perim on formula (5H);

the function euler_hexa_sperim on formula (8H).

Algorithm euler_hexa_def:

int euler_hexa_def (int nr, int nc, u_char (*pict)[nc])

{

int v = 0, e = 0, f = 0; int par = 0;

for (int i = 0; i < nr – 2; i++, par = 1 - par)

for (int j = 2 - par; j < nc – 1; j+=2)

if (pict [i][j])
{ v++;

if (pict [i+2][j])

{ e++;
 if (pict [i+1][j-1]) {e++; f++; }
 if (pict [i+1][j+1]) {e++; f++; }

}

else

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 67

{

if (pict [i+1][j-1]) e++;

if (pict [i+1][j+1]) e++;

}

}

return v – e + f;

}

Algorithm euler_hexa_perim:

int euler_hexa_perim (int nr, int nc, u_char (*pict)[nc])

{

int v = 0, p = 0, f = 0; int par = 0;

for (int i = 0; i < nr – 2; i++, par = 1 - par)

for (int j = 2 - par; j < nc – 1; j+=2)

if (pict [i][j])

{ v++;

if (pict [i+2][j])

{

}

else

if (pict [i+1][j-1]) f++;

else p++;

if (pict [i+1][j+1]) f++;

else p++;

{ p++;

if (!pict [i+1][j-1]) p++;

if (!pict [i+1][j+1]) p++;

}

}

else

{ if (pict [i+2][j]) p++;

if (pict [i+1][j-1]) p++;

If (pict [i+1][j+1]) p++;

}

return -2*v + p / 2 + f;

}

Algorithm euler_hexa_sperim:

int euler_hexa_perim (int nr, int nc, u_char (*pict)[nc])

{

int v = 0, sp = 0, f = 0; int par = 0;

for (int i = 0; i < nr – 2; i++, par = 1 - par)

for (int j = 2 - par; j < nc – 1; j+=2)

if (pict [i][j])

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 68

{ v++;

if (pict [i+2][j])

{

}

else

if (pict [i+1][j-1]) f++;

else sp++;

if (pict [i+1][j+1]) f++;

else sp++;

{ sp++;

if (!pict [i+1][j-1]) sp++;

if (!pict [i+1][j+1]) sp++;

}

}

return -2*v + sp + f;

}

VI. EXPERIMENTAL RESULTS

Randomly generated artificial binary images, some of size 64X64 and some of size 128X64, were input

to each of the three algorithm versions. The following two tables show the average number comp of

comparison operations and the average number incr of increment operations (increments of indices are not

counted).

IMAGES OF SIZE 64X64 IMAGES OF SIZE 128X128

version comp incr version comp incr

def 20445 19864 def 37480 33726
perim 31752 14877 perim 64008 24909

semi-perim 20445 12377 semi-perim 37480 20855

VII. CONCLUSIONS

As we can see, the results are very similar to those obtained in [12] for binary images on the square grid.

The perimeter based algorithm version euler_hexa_perim is less efficient than the definition based version

euler_hexa_def. However, the semi-perimeter based version euler_hexa_sperim is the most efficient of all

three.

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 69

REFERENCES

[1] M.J.E. Golay, “Hexagonal parallel pattern transformations,” IEEE Trans. Comput. 18(8):733-740 (1969).

[2] K. M. Jeevan, V. K. Padmaja, A. B. Anne Gowda, S. Krishnakumar, “Performance analysis of image processing in hexagonal grid based on image

compression, denoising and steganography,” Int. J. Engin. Adv. Techn. (IJEAT), 9(1S6):26-31 (2019).

[3] N. I. Rummelt, J. N. Wilson, "Array set addressing: enabling technology for the efficient processing of hexagonally sampled imagery", J. Electron. Imag.
20(2):1-12 (2011).

[4] X. Li, “Storage and addressing scheme for practical hexagonal image processing,” J. Electron. Imag. 22(1):1-3 (2013).
[5] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London (1982).

[6] B. K. P. Horn, Robot Vision, The MIT Press, Cambridge, Mass. and McGraw-Hill, NY (1986).
[7] E. Bribiesca, "Measuring 2-D shape compactness using the contact perimeter," Comput. Math. Appl. 33(11):1-9 (1997).
[8] E. Bribiesca, "Computation of the Euler number using the contact perimeter," Comput. Math.Appl. 60(5): 1364-1373 (2010).

[9] J.H. Sossa-Azuela, E. B. Cuevas- Jiménez, D.Zaldivar-Navarro, "Computation of the Euler number of a binary image composed of hexagonal cells," J.
Appl. Res. Techn. 8(3):340-351 (2010).

[10] J.H. Sossa-Azuela, E. B. Cuevas- Jiménez, D.Zaldivar-Navarro, "Alternative way to compute the Euler number of a binary image," J. Appl. Res. Techn.

9(3):335-340 (2011).

[11] J. H. Sossa Azuela, E. Rubio-Espino, R. Santiago-Montero, A. López, A. Peña Ayala, E. V. Cuevas Jiménez, "Alternative formulations to compute the
binary shape Euler number," IET Comput. Vis. 8(3):171-181 (2014).

[12] J. Weinstein, "An improved algorithm for the computation of the Euler number of a binary image using the perimeter," Int. J. Inform. Comput. Sci.

(IJICS) 7(8):1-6 (2020). DOI:16.10089.IJICS.2020.V7I8.18.3395

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

Volume 70, Issue 9, 2022 | Page No. 70

https://dblp.uni-trier.de/db/journals/iet-cvi/iet-cvi8.html#AzuelaRSLAJ14
https://drive.google.com/file/d/1LnC9xsmmOR907Zr0SnVPqIH2o1LnHT6M/view?usp=sharing

