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Abstract: 

 
This paper is concerned with the direct, steady state problem of thermoelasticity. An attempt is made to determine the temperature, 

displacement and stress functions of a thin rectangular plate occupying the space D: 0  x  a, -b  y  b, with stated boundary conditions. The 

finite Marchi-Fasulo integral transform technique has been used to obtain the solution of the problem. 
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INTRODUCTION 

 
During recent years, the theory of thermo elasticity has found considerable applications in the solutions of engineering problems. In 

modern structures, structural components are mainly modelled as plates, as their differential characteristics enable engineers to design better and 

lighter structures. Hence, the thermo elastic behaviour of rectangular plates is of keen interest in the field of mechanics, civil, aerospace, marine 

and automobile engineering. 

 
Tanigawa et al. [1] have studied thermal stress analysis of a rectangular plate and its thermal stress intensity factor for compressive 

stress field. Vihak et al. [2] have investigated the solution of the plane thermo elasticity problem for a rectangular domain. Adam et al. [3] have 

determined thermo elastic vibration of a laminated rectangular plate subjected to a thermal shock. Ghadle et al. [4] have studied the study of an 

inverse steady state thermo elastic problem of a thin rectangular plate. Gaikwad et al. [5] have studied the quasi-static thermal stresses in a thick 

rectangular plate subjected to constant heat supply on extreme edges where as the initial edges are thermally insulated. Deshmukh. et al. [6] 

have studied thermal stresses in a simply supported plate with thermal bending moments. Gaikwad et al. [7] have studied three dimensional non- 

homogeneous thermo elastic problem in a thick rectangular plate due to internal heat generation. Thakare et al. [8] studied thermal stresses of a 

thin rectangular plate with internal moving heat source. 

 
In this article, the direct steady state problem of thermo elasticity of a thin rectangular plate occupying the space 

𝐷: 0  𝑥  𝑎, −𝑏  𝑦  𝑏, with stated boundary conditions is considered. On the edge 𝑥 = 0, the third kind boundary condition is maintained at 

ℎ(𝑦), which is a known function of 𝑦. Also, third kind boundary condition is maintained at 𝐹1(𝑥) on the upper surface, and at 𝐹2(𝑥) on the 

lower surface. 
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THE FINITE MARCHI- FASULO INTEGRAL TRANSFORM AND ITS PROPERTY 

 

The Finite Marchi- Fasulo integral transform of ƒ(𝑧) , −ℎ < 𝑧 < ℎ is defined to be 

h 

F (n) =  f (z)Pn (z)dz 
−h 

Then at each point of (−ℎ, ℎ) at which ƒ(𝑧) is continuous, 

 
 

(2.1) 

f (z) =  
 

 

F (n)
P (z)

 (2.2) 
 

where 

n 

n=1 n 

Pn (z) = Qn cos(an z) −Wn sin(an z) 

Qn = an (1 + 2 ) cos(anh) + (1 − 2 ) sin(an h) 

Wn = (1 + 2 ) cos(anh) + (2 − 1 )an sin(an h) 

h n  n sin(2a h) 
n n 

2a 
n n 

 = P 2 (z)dz = h[Q 2 + W 2 ] + 
−h 

n [Q 2 − W 2 ] 
n 

The eigen values an are the solutions of the equation 

[1an cos(an h) + 1 sin(an h)] [2 cos(an h) +  2 an sin(an h)] 

= [ 2 an cos(an h) − 2 sin(an h)] [1 cos(an h) − 1an sin(an h)] 

where 1, 2, 1 and 2 are constants. 

The sum in (2.2) must be taken on n corresponding to the positive roots of the equation (2.3) 

Moreover, the integral transform (2.1) has the property: 

 

 
(2.3) 

h  2 f (z) P (h)  
 

 

f (z)  P (−h)  f (z)  
 

 

 2 
Pn (z)dz = 

−h 1 
1 

f (z) + 1 

z 
 

− n 

z =h 
 

2 

2 

f (z) +  2 

z 
 z =−h 

− a 2 F (n) 

 
 

FORMULATION OF THE PROBLEM: GOVERNING EQUATION 

 
Consider a thin rectangular plate occupying the space 𝐷: 0 ≤ 𝑥 ≤ 𝑎; −𝑏 ≤ 𝑦 ≤ 𝑏; 

The displacement components 𝑢S, and 𝑢𝑦 in the x and y directions respectively are represented in the integral form as ( Tanigawa, Y and 

Komatsubara, Y. ; 1997) are 

 

a  1   2U  2U   
ux  =   

E 
 

y 
2 

− 
x 

2   
 + T  dx (3.1) 

0     
b  1   2U  2U   

uy  =   
E 

 
x 

2   
− 

y 
2   

 + T  dy (3.2) 
−b     

where E,  and 𝛼 are the Young’s modulus of elasticity, Poisson’s ratio and the linear coefficient of thermal expansion of the material of the 

plate respectively and 𝑈( 𝑥, 𝑦) is the Airy’s stress function which satisfy the differential equation : 

  2  2 
2

   2  2   +  U (x, y) = −E + 
 

   

T (x, y) 
 

 

(3.3) 
 x 2 y 2   x 2 y 2  

n 
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where 𝑇(𝑥, 𝑦) denotes the temperature of a thin rectangular plate satisfying the differential equation : 

 2T 
+ 

 2T 
=

 

x 2 y 2
 0

 
 

 T (x, y)  

(3.4) 

subject to the boundary conditions   T (x, y) + 
 

T (a, y) = g( y) 

x 
 x = 0 

= h( y)  
 

(3.6) 

(3.5) 

 T (x, y)  

T (x, y) + k1 
 

 
 

y  y = b 

= F1 (x) (3.7) 

 T (x, y)  

T (x, y) + k2 
 

 
 

y  y = −b 

=F 2(x) (3.8) 

where k1 and k2 are the radiation constants on the two edges 𝑦 = 𝑏 and 𝑦 = − 𝑏 of the rectangular plate. The stress components in terms of 

 2U 

𝑈( 𝑥, 𝑦) are given by  xx = 
 

 

y 2 
(3.9) 

 = 
 2U 

yy 
x

2 

 = − 
 

2
U

 
 

 

 

(3.10) 

xy xy 
(3.11) 

The equations (3.1) to (3.11) constitute the mathematical formulation of the problem under consideration. 

 

 

SOLUTION OF THE PROBLEM 

 
Applying finite Marchi-Fasulo integral transform defined in (Patel S. R.; 1971 [9]) to the equations (3.4) to (3.6), and using (3.7), (3.8), one 

obtains, 
 

d 2T * 

−
 

 

 

dx 2 

 

a 2T * = F (x) 

 

(4.1) 

where the eigen values a are the solutions of the equation 

[1an cos(an h) + 1 sin(an h)] [ 2 cos(an h) +  2 an sin(an h)] 

= [ 2 an cos(an h) −  2 sin(an h)] [1 cos(an h) − 1an sin(an h)] 
 

and 

F (x) = 
P

n 
(−b) 

F (x) − 
P

n 
(b) 

F (x) 
  

2 1 

2 1 

T * (0, n) + 
dT * (0, n) 

dx 
= h* (n) (4.2) 

T * (a, n) = g * (n) (4.3) 

where 𝑇∗ denotes the finite Marchi – Fasulo integral transform of 𝑇 and 𝑘 is a Marchi – Fasulo transform parameter , α1,α2, β1 and β2 are 

constants. 
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The equation (4.1) is a second order differential equation whose solution is given by 

T * (x, n) = A cosh(a x) + B sinh(an x) + 
1 

D 2 − a 2 
F (x) (4.4) 

where 𝐴 and 𝐵 are arbitrary constants. 

Using (4.2) and (4.3) in (4.4), we obtain the values of 𝐴 and 𝐵 as, 

A = 
1 

 

an cosh(ana) − sinh(ana) 

 

 

 
1 

  


g *(n)an − h*(n) sinh(ana) − an 
 F (x) + 


 

 
 

  
 1 

 
D 2 − an 

2 

  
  d 

  
 x = a  

  


   
  

   2 2 
F (x)


 sinh(ana) +  

dx     2
 

2 
F (x)

 sinh(ana)  

 

B = 
1

 

 
D − an 

 

 x = 0   
D − an   

 x = 0  

an cosh(ana) − sinh(ana) 

    
h*(n) cosh(a a) − g*(n) +  1 

F (x) −  
 n  

D 2 − a 2 
  
 x = a  

 

 
 1 

 
 

 

   

 

 d  1  
  

   2 2  
F (x)


 cosh(ana) −  

dx   2 2 
F (x)

 cosh(ana) 


 

 
D

 

− an  x = 0   
D − an   

 x = 0  

Substituting these values of 𝐴 and 𝐵 in (4.4), 

T * (x, n) = 

  
* 1

   d   1 
 

 

     sinh(an (x − a))  

h (n) − 2 2 
F (x) −     

2 
2   

F (x) 
    

  D − an  x=0 
dx  D − an 

 x=0 

 

 an cosh(an a) − sinh(an a)  

  
* 1      an cosh(an x) − sinh(an x)  1 

 

+ g 
(n) − 2 

2 
F (x) 

   
a
 

cosh(a a) − sinh(a a) 
 + 

2
 

2   
F (x) 

 D − an  x=a 

       n n 

n  D − an 

(4.5) 

Applying inverse finite Marchi- Fasulo integral transform to the equation (4.5), the expression for temperature 𝑇(𝑥, 𝑦) becomes 

T (x, y) = 

     
* 1

   d   1 
 

 

 
    

Pn ( y)     sinh(an (x − a))  
 

h (n) −    
2

 
2 

F (x) −     
2

 
2 

F (x)      
 

n=1   D − an  x=0  
dx  D − an  x=0 

 n
  an cosh(an a) − sinh(an a)  

     
* 1    Pn ( y) 

 
 

 an cosh(an x) − sinh(an x)  
 

+ g (n) − 2 
2 

F (x)     
 

  
a
 cosh(a a) − sinh(a a) 


 

n=1 
 
  

 D 

1 

− an 

 
 x=a 


 

Pn ( y) 
 

 

n  n n n  

+  F (x)  

D   − a  

(4.6) 

n=1  n  n 

 

 

n 
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where 

 

 

f * (n) = 

b 

 f ( y)P ( y)dy , h* (n) = 
−b 

b 

 h( y)Pn ( y)dy , 
−b 

n = 

b 

 P 2 ( y)dy 
−b 

Pn ( y) = Qn  cos(an y) − Wn sin(an y) 

Qn   = an (1 +  2 ) cos(anb) + (1 − 2 ) sin(anb) 

Wn   = (1 + 2 ) cos(anb) + ( 2 − 1 )an sin(anb) 

Equation (4.6) is the desired solution of the given problem with 

1 = 2 = 1 and 1 = k1 ,2  = k2 . 

 

Substituting the value of T(x,y) from ( 4.6) in ( 3.3) , the expression for Airy’s stress function U(x,y) is 

U (x, y) = 

     
* 1

   d   1 
 

 

 
 

Pn ( y)  sinh(an (x − a))  
 

− Eh (n) −     
2
 

2 
F (x) −     

2
 

2 
F (x)  

2 
   

 
n=1   D − an  x=0  

dx  D − an  x=0 

 an  n  an cosh(an a) − sinh(an a)  

     
* 1   Pn ( y)  an cosh(an x) − sinh(an x)  

 − Eg (n) − 2 
2 

F (x) 
 

2 
  

a
 

cosh(a a) − sinh(a a) 

 

n=1 

 

 D − an 
 x=a 


 

an   n  n n n  

    1
  Pn ( y) 
 − E  

n=1  D 
2
 
− an 

2 F (x)  
 an 

2 
n 

(4.7) 

 

 

DETERMINATION OF THE THERMOELASTIC DISPLACEMENT 

 
Substituting the value of 𝑈(𝑥, 𝑦) from (4.7) in (3.1) and (3.2), one obtains the thermoelastic displacement functions 𝑢S and 𝑢𝑦 as 

u x = 

  
 (1 +  ) P  ( y ) 

−  
P 

 
( y )  


 

 

n =1   an n a
n 

3 


n     

 
h * 

 1 
(n) −  2

 
 

2   
F ( x ) 

  d    1 
  2 

 

F ( x )
  

 
 1 − cosh( an a ) 

 
 

 

 − an  x =0  dx   D − an   
x = 0   an cosh( an a ) − sinh( an a )     

   

 

+ 

 g * (n ) − 

  1 
F ( x ) 


 

 
 an sinh( an a ) − cosh( an a ) + 1   

    

 

 
D 2 − a 2  

 
 a cosh( a a ) − sinh( a a )   

 
 

  
 

 
 P  ( y ) 

n 

P 
 

( y )  

 x = a   n 

a 
1

 

n n 

    P  ( y )  

   
a d 2     1  

+     n −   n 
 

 F ( x )dx +     n 
   

 
 

F ( x )dx 
n =1    n a 2    D 2 − a 2 n=1  a 2   

 dx 2 
 D 2 − a 2  

 n n       0 n    n n     0  n  

(5.1) 
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  a  Pn ( y)dy 

n=1   n n  −b  

 
* 1

   d   1 
 

 

 
 sinh(an (x − a)) 


 

h (n) − 
2 2 

F(x) −     
2  

2 F(x)  
  D − an 

 x=0 
dx  D − an   an cosh(ana) − sinh(ana)   

 
  

* 1 

x=0   
 

  an cosh(an x) − sinh(an x)   
 + g (n) − 2 2 

F(x) 
 

a
 

cosh(a a) − sinh(a a) 
 

 


  D − an  x=a 


  n n n       

 
  


 1   

b 
    

 
 

    1  
 

+ 


 Pn (y) + 
a 

2 
Pn ( y)dy  

D
2 

− a 
2 

F(x) 
n=1  n   −b

 n      n  
  


    1     

b 

 d 2   1  

−  a  Pn (y)dy 
dx

2 
 

D
2 

− a 
2 

F(x) 

n=1   n n −b   n   
(5.2) 

 

DETERMINATION OF STRESS FUNCTIONS 

 
Using (4.7) in (3.10), (3.11) and (3.12), the stress functions are obtained as 

 xx = 

     
* 1

   d   1 
 

 

 
 

Pn


( y)  sinh(an (x − a))  
 

− Eh (n) −     
2
 

2 
F (x) −     

2
 

2 
F (x)  

2   
 

n=1   D − an  x=0  
dx  D − an    an   n    an  cosh(an a) − sinh(an a)  

    
* 1

   Pn

( y)  an cosh(an x) − sinh(an x)  

 − Eg (n) − 2 
2 

F (x)  
2
 

 
a   cosh(a a) − sinh(a a) 


 

n=1 

 

 D 

  

− an 

1 

 x=a 

  an   n      n n n  

   Pn

( y) 

 
− E   

2
 

n=1  D − an 2 
F (x)  

 an 
2
n 

(6.1) 
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Pn ( y)     sinh(an (x − a))  

 
− Eh (n) −   

2
 

2 
F (x) −     

2
 

2 
F (x)      

 
n=1   D − an  x=0  

dx  D − an 
 x=0 

 n
  an cosh(ana) − sinh(ana)  

    
* 1    Pn ( y) 

 
 

 an cosh(an x) − sinh(an x)  
 

− Eg (n) − 2 2 
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 D 
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 1  
 x=a 


 

 

n  n n n  
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SPECIAL CASE AND NUMERICAL RESULTS 

 

Set g( y) = ( y − b)2 ( y + b)2 ea , 

in (4.6), to obtain 

h( y) = ( y − b)2 ( y + b)2 ,  = 16(k1 + k2 ), a = 2,b = 1 

T (x, y)   3an cos 2 (an ) + (an
2 − 3) cos(an ) sin(an )  =  

 
n=1  an 

4
n 

Pn ( y) 

 

 
  sinh(an (x − 2)) 

e
2  

− 
 an cosh(an x) − sinh(an x)   (7.1) 

 
 n 

cosh(2an ) − sinh(2an    

 

 
cosh(2a ) − sinh(2an    


 

 

CONCLUSION 
 

The temperature, displacement functions and thermal stresses have been determined of a thin rectangular plate, with the stated boundary 

conditions. The finite Marchi-Fasulo integral transform technique has been used to obtain the numerical results. 

 
The expression (7.1) is represented graphically. It is found that as the value of 𝑥 increases, the temperature goes on decreasing. Any particular 

case of special interest can be derived by assigning suitable values to the parameters and functions in the expression. The temperature, 

displacement and thermal stresses that are obtained can be applied to the design of useful structures or machines in many engineering 

applications. 
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