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Abstract:

This paper is concerned with the direct, steady state problem of thermoelasticity. An attempt is made to determine the temperature,

displacement and stress functions of a thin rectangular plate occupying the space D: 0 < x < a, -b <y < b, with stated boundary conditions. The
finite Marchi-Fasulo integral transform technique has been used to obtain the solution of the problem.
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INTRODUCTION

During recent years, the theory of thermo elasticity has found considerable applications in the solutions of engineering problems. In
modern structures, structural components are mainly modelled as plates, as their differential characteristics enable engineers to design better and
lighter structures. Hence, the thermo elastic behaviour of rectangular plates is of keen interest in the field of mechanics, civil, aerospace, marine
and automobile engineering.

Tanigawa et al. [1] have studied thermal stress analysis of a rectangular plate and its thermal stress intensity factor for compressive
stress field. Vihak et al. [2] have investigated the solution of the plane thermo elasticity problem for a rectangular domain. Adam et al. [3] have
determined thermo elastic vibration of a laminated rectangular plate subjected to a thermal shock. Ghadle et al. [4] have studied the study of an
inverse steady state thermo elastic problem of a thin rectangular plate. Gaikwad et al. [5] have studied the quasi-static thermal stresses in a thick
rectangular plate subjected to constant heat supply on extreme edges where as the initial edges are thermally insulated. Deshmukh. et al. [6]
have studied thermal stresses in a simply supported plate with thermal bending moments. Gaikwad et al. [7] have studied three dimensional non-
homogeneous thermo elastic problem in a thick rectangular plate due to internal heat generation. Thakare et al. [8] studied thermal stresses of a
thin rectangular plate with internal moving heat source.

In this article, the direct steady state problem of thermo elasticity of a thin rectangular plate occupying the space
D: 0 <x <a, —b <y < b, with stated boundary conditions is considered. On the edge x = 0, the third kind boundary condition is maintained at
h(y), which is a known function of y. Also, third kind boundary condition is maintained at F1(x) on the upper surface, and at F2(x) on the
lower surface.
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THE FINITE MARCHI- FASULO INTEGRAL TRANSFORM AND ITS PROPERTY

The Finite Marchi- Fasulo integral transform of f(z) ,—h < z < his defined to be
h

F(n) = i f 2)P, (2)dz (2.2)
Then at each point of (—h, h) at which f(z) is continuous,
f@)=73, F_(n)Pn @ (2.2)
n=1 n
where

P,(z) = Q, cos(a,z) -W, sin(a,z)
Q, =a,(a, +a,)cos(a,h) + (B, - B,)sin(a,h)
W, = jﬁl +B,) cos(a,h) + (o, —a,)a, sin(a,h)
n n sin(2a h)
n n 2a n [Ql? _an]
A = P2(2)dz=h[Q2+W2]+ —n
The eigérﬁ values &, are the solutions of the equation
[a,a, cos(a,h) + B, sin(a,h)]x[B, cos(a,h) + a,a, sin(a,h)]
=[a ,a, cos(a,h) — B, sin(a,h)]x[B, cos(a,h) —a,a, sin(a,h)] (2.3)
where au, a2, B1 and 2 are constants.
The sum in (2.2) must be taken on n corresponding to the positive roots of the equation (2.3)

Moreover, the integral transform (2.1) has the property:

o2t (2) P () d@1  PeEmr @

r— L f(z — . f(2 — -alF
l 57, Pa()dz = o, Ugl (2)+oy > |_]z:h o, Lf’z (@) +a, > |Jz:fh aiF(n)

FORMULATION OF THE PROBLEM: GOVERNING EQUATION

Consider a thin rectangular plate occupyingthe space D: 0 < x < a; —b < y < b;
The displacement components us, and uy in the x and y directions respectively are represented in the integral form as ( Tanigawa, Y and

Komatsubara, Y. ; 1997) are

2[ 1 I( CEURGEY ? 1
u, =1\ = -V +aT |dx 3.1
x I e ) ¥ (3.1)
bl1(eu o \|
u, = || = -V +aT | dy (3.2)
! _b[ Elox® oy’ ) ]
where E, V' and « are the Young’s modulus of elasticity, Poisson’s ratio and the linear coefficient of thermal expansion of the material of the
plate respectivel*and U( x,y) is the Airy’s stress function which satisfy the differential equation :
(02, 0% _ el %)
+ U(x,y) =-aE + T (X Y) (3.3)

Lax_z_ay2 ox?  oy?
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where T(x, y) denotes the temperature of a thin rectangular plate satisfying the differential equation :

2 2
o1 0T 34
ox2 oyl 0 [ aT (X, y) |
subject to the boundary conditions LT (x,y)+ | = h(y) (3.5)

T(a,y)=9(y) (3.6)
[ oT (X, y) |
LT (X, y) +ki J =F,(x) (3.7)

oy y=b
[ AT (%, y) |
LT (X, y) + k2 p J =F ,(x) (3.8)
y y — _b

where ki and ko are the radlatloan c&nstants onthetwoedgesy = bandy = — b of the rectangular plate. The stress components in terms of
U(x,) are givenby G ,, = 7 (3.9
s -oU (3.10)

" oy '
c =-

Xy @ (3.11)

The equations (3.1) to (3.11) constitute the mathematical formulation of the problem under consideration.

SOLUTION OF THE PROBLEM

Applying finite Marchi-Fasulo integral transform defined in (Patel S. R.; 1971 [9]) to the equations (3.4) to (3.6), and using (3.7), (3.8), one
obtains,

daT”
dx?

where the eigen values an are the solutions of the equation

[a,a, cos(a,h) + B, sin(a,h)]1x[B, cos(a,h) + a ,a, sin(a,h)]

=[a,a, cos(a,h) — B, sin(a,h)]x [B, cos(a,h) — a,a, sin(a,h)]

-a,T" = F() (4.1)

and
P (-b P (b
a, 2 oy !
. dT"(0,n .
T°(0,n)+ # =h"(n) (4.2)
dx
T (an)=g"(n) (4.3)
where T* denotes the finite Marchi — Fasulo integral transform of T and k is a Marchi — Fasulo transform parameter , a,a2, f1 and 2 are
constants.
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The equation (4.1) is a second order differential equation whose solution is given by

T7(x,n) = Acosh(a, x) + Bsinh(a, x) + ﬁ F () (4.4)
—_ an
where A and B are arbitrary constants.

Using (4.2) and (4.3) in (4.4), we obtain the values of A and B as,

A= ! x

an cosh(ana) - sinh(ana)

(.

s r ]
|g (n)an —-h (n)smh(ana)—an —F () +

|

1' L D? - anZ x=a L

! | [a | ﬂ |

[ L F(X)| J smh(ana)+{ldf|L _1an F(x)| smh(a a)J
1

B= x
a, cosh(aya) - sinh(a,a)

A f
(n)cosh(a a)-g ( )+ F(x)
j n D2 —an2 Ux -a }
‘ T L ] K [ 1 ﬂ |
L 2_—“ F(x) | |x . cosh(a,a) - {td_“L.m_Z_ (x) m o cosh(a,a)
Substituting these values of Aand B in (4.4),
T (x,n) =
[ { 1 [d|r 1 1 ] [ sinh(a, (x—a)) |
| B L R - x |
h (") |D —a o X[ D -a’ Feo | | a, cosh(a,a) - sinh(a,a) |
[ N 1 1 [an coshéanxg—smh anxg]+ 1
+|g n-|_» F)| cosh(a a) —sinh(a a 2 » F()
D -a, Jx:a X an n n | D —a,
(4.5)
Applying inverse finite Marchi- Fasulo integral transform to the equation (4.5), the expression for temperature T'(x, y) becomes
T (Xr y) = 1
ol . T (4af 1 1] Po(y) | sinh(an(x—a) |
|

:
| - x *
zth ) lL = F(x)L=O idXLD Y F(X)J|§ x=oJ . Lan cosh(a, a) — sinh(a, a) J

=1, 1 Pa(y) [a, cosh(anx)—sinh(anx)l
+Z|Lg (”)_[W— Fool  Ix S oosh{a-—a)—sinhta—a)

A

(4.6)
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where

b b b

7 (n) = j f(y)Pa(y)dy , h*(n) = jbh(y)Pn(y)dy ;M= ijnZ(y)dy

P,(y) =Q, cos(a,y) —W, sin(a,y)

Q, =a,(o, +a,)cos(ab) + (B, — B,)sin(a,b)
W, = (B, + B,) cos(a,b) + (a0, —a,)a, sin(a,b)
Equation (4.6) is the desired solution of the given problem with

B,=PB,=1 and a, =k, ,a, =Kk,.

Substituting the value of T(x,y) from (4.6) in (3.3) , the expression for Airy’s stress function U(x,y) is

Uy =
oo‘ .7 1 (af 1 T Ve I sinh@nx-a) 1
- E h _‘ F | - —|— X X
’ EL (n) LDZ —a,’ (X)JX:O 4deLDz ~a,’ F(X)J|ﬁ on a, Lan cosh(ana)—sinh(ana)J
=, 1 P.(y) [ a, cosh(a,x) —sinh(a, x)—‘
~aE) |g (n)—{ 2 LFWI x cosh(a_a) - sinh(a_a)
nzlt D —ap J B l an27\«n XLan n n J
1 Paly)
~aE > [BZ__anzF(XH oy (4.7)

DETERMINATION OF THE THERMOELASTIC DISPLACEMENT

Substituting the value of U(x, y) from (4.7) in (3.1) and (3.2), one obtains the thermoelastic displacement functions us and uy as
u, =

o3 {M}Eﬁm_ P, ()]

X
dn 7\,n an3kn f

n=1

|
|

Nh*(n)—{ ! F(x)wl _Jd{ ! I:(X)ﬂ T 1 - cosh( a,a) |
J

\L D -a, o |X[D -a,’ ﬁx:oﬁa” co?h( ana) —sinh( ana)

M. T 1 .
+'1g"(n) - | F(X) [ an sinh( ana) — cosh( ana) +1 |} '
|4 D2-a? | ‘| a cosh(a a)-sinh(a a)
i ( R e (B J J
P(y) P (y) R, fd? 1
ray iT_W]fXI 1, P +ay ‘nZ;l<|La o ﬁ T 2[ . F(x)}dx
L n nJ 0 n n n 0 n

(5.1)
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el )
wYan [P (y)dyf

=l n N-b

T { 1 1 [af 1 N T sinha,(x-a)) 7

[h M- 5 "), &{527 FOO ) XZOJLan cosh(aa) —sinh(ag) |

X [g (n)— | _21_2 F(x)—|| Ta coang ~smnien| }
L L T O J

+°‘Z}nlﬂpb”(yhajp”d(y)ﬁdyfﬂ = F|,

_anzyl _[Pn(y)dyJ - |L52—_afF(X)|u

(5.2)

DETERMINATION OF STRESS FUNCTIONS

Using (4.7)in (3.10), (3.11) and (3.12), the stress functions are obtained as
O xx =

1 [d 1 ﬂ TPn”(y)r sinh(an (x — a)) i
_ \ D
OLEZU] "- ‘LD - ay, F(X)L:o 4de|LD2 - a, F(X)JF o] @ W, [a Cosh(ana)—sinh(ana)J|
. 1 Py (Y) |—an cosh(a, x) — sinh(a, x)
_qEZ\g (n)—{ 2 F) | | x a cosh(a a)—sinh(a a)
n=1L o[ L n —|Jﬁ3a“ an L n n no |
_QE;\L D? —a,2 F(X)J|X -y (6.1)
7 [ 1 [ [ ﬂ | Po(y) [ sinh(as(x—a)) 1
oo| ) ‘r 1 col % d | 1 | n n
—aE) 'h - X -y—|l——F X X
’ §|L " || D —an2 U,:o [deDZ —an2 (X)Jﬁ 40 My Lan cosh(ana)—sinh(ana)J
” 1 P.(y) [ a, cosh(a,x)-sinh(a, x)—’
QEZ‘ g (n) ﬂﬁ— F(x)| I X La_cgsh(a_a)_&nh(a_aﬂ
n= 1L |J |J n n n
—oE d2 Z| F(:;ﬂ P(y)
1IlD? - T ann (6.2)
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Gyxy = '
o | [ ] [d [ ﬂ 1 Po(y) [ cosh(an(x-a)) |
| X X
aEZ}I_h ") l\ D _ n2 ( ‘I " H |L 7 FW e ahn Lan cosh(a,a) — sinh(a,a) J'
- ol 1 y (y) lf a, smh(an X) — cosh(a, x)l
EY | i aXi—  acosh(aa)—sinh(aa)
- Zlg o (LD mCh F(X)|U | ,nn Lon n n
=hog =l 7 P, (y)
+oE ﬁ; b7 |G (6.3)

SPECIAL CASE AND NUMERICAL RESULTS

set g(y) = (y—b)>(y+b)*e* , h(y)=(y-b)*(y+b)*, 8 =16(k, +k,) a=2b=1
in (4.6), to obtain
TXY) = |—|33n cos?(an) + (an® — 3) cos(an)sm(an)—||P )

0 L a, n I

(T sinh(an(x=2)) Tez _['an cosh(anx) —sinh(aax) 1| (7.1)

[an cosh(2a,) — sinh(2a, )J' Lan cosh(2a,) —sinh(2a, )JJF

X

CONCLUSION

The temperature, displacement functions and thermal stresses have been determined of a thin rectangular plate, with the stated boundary
conditions. The finite Marchi-Fasulo integral transform technique has been used to obtain the numerical results.

The expression (7.1) is represented graphically. It is found that as the value of x increases, the temperature goes on decreasing. Any particular
case of special interest can be derived by assigning suitable values to the parameters and functions in the expression. The temperature,
displacement and thermal stresses that are obtained can be applied to the design of useful structures or machines in many engineering
applications.
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