# Design and Application Verification of a Two-Stage Operational Amplifier using 90nm CMOS Technology

*G. Appala Naidu Assistant Professor, ECE Department, JNTUGV, Vizianagaram, AP-53500.* 

**ABSTRACT:** Today VLSI technologies play the vital role and huge demand to design electronic circuits and systems with increasing miniaturization, portability, performance, reliability, and functionality. As Analog VLSI, the fundamental design is OP-AMP Integrated Circuits. Now a days, these OP-AMPs are most useful and most of the electronic devices are drastically used in signal conditioning, filtering and for execution of mathematical operations. Generally, two stage OP-AMPs preferred than single stage OP-amps because of enhanced gain, increased output swing, reduced noise, and improved bandwidth.

#### **1. INTRODUCTION:**

Operational amplifiers, commonly known as op-amps, play a crucial role in analog processing systems. In an ideal scenario, they function as voltage-controlled current sources with infinite voltage gain. Op-amps are vital components in numerous analog and mixed-signal systems. They are utilized in various levels of complexity to achieve functions ranging from DC bias generation to high-speed amplification or filtering. However, designing op-amps remains challenging due to the reduction in supply voltage and transistor channel lengths with each successive generation of CMOS technologies.

The progress in very large-scale integration (VLSI) technology has now reached a point where it is possible to integrate millions of transistors onto a single chip. Initially, integrated circuits were used as subsystem components, divided at analog-digital interfaces. Advancements in technology have reached a stage where it is feasible to integrate entire systems onto a single chip by merging analog and digital functions. Complementary Metal-oxide Semiconductor (CMOS) technology has gained substantial popularity in mixed-signal implementations owing to its capability to deliver high density and power efficiency in the digital domain, while simultaneously providing a suitable combination of components for analog design.

The operational amplifier (Op-Amp) needs to meet specific requirements concerning gain, stability, and operating frequency. To address the limitations of single-stage amplifiers, alternative architectures must be adopted. With the advancement of scaled processes, faster speeds are achievable, but this comes at the cost of lower open-loop gain and reduced voltage headroom, making it difficult to cascade multiple stages for higher gains. Multiple-stage amplifiers provide a viable approach to overcome the limitations imposed by power supply voltage and other

performance factors in single-stage amplifiers, allowing for higher gain circuit designs. Nonetheless, the implementation of multiple-stage amplifiers can be intricate, particularly concerning compensation. Two-stage operational amplifiers are frequently favored in multistage designs due to their ability to offer high gain and wide output swing. However, an uncompensated two-stage operational amplifier exhibits a two-pole transfer function, with both poles situated below the unity gain frequency, which can result in stability challenges.

#### 2. ANALYSIS:

Two Stage Operational Amplifier consists 8 transistors M1 to M8 all are in saturation.



Figure 2.1 Circuit diagram of Two Stage Op-Amp.

In designing of op-amp, it has 12 steps to follow

- > Select the smallest device length (L1 to L8) that ensures the channel length modulation parameter ' $\lambda$ ' is kept to a minimum.
- ➢ Compensation Capacitance 'C<sub>C</sub>'

Given a target phase margin of  $60^{0}$  select the minimum value of the Compensation capacitor (C<sub>C</sub>) required to achieve this phase margin<sup>-</sup>

#### $C_{C} > 0.22C_{L}$

> Tail Current  $I_{D5}$ , we determine the minimum value for the tail current  $I_{D5}$  based on slew rate requirements.

## $I_{D5} = SR * C_C$

If SR (Slew Rate) is not given

 $I_{D5} = 10 \log ((V_{DD} + |V_{SS}|)/2T_s)$ 

where T<sub>s</sub> is settling time

Size of M<sub>3</sub>PMOS transistor

 $I_{D3} = \frac{1}{2} I_{D5}$ ;  $M_3$  is in saturation

i.e.,  $I_{D5} = \frac{1}{2} \mu_p C_{ox} (W/L)_3 (V_{SG3} - |V_{th3}|)^2$ 

 $M_3$  is diode connected,  $V_{SG3} = V_{SD3}$ 

$$I_{D3} = \frac{1}{2} \mu_p C_{ox} (W/L)_3 (V_{S3} - V_{G3} - |V_{th3}|)^2$$

 $M_1$  is in saturation

 $V_{DS1} = V_{GS1} - V_{th1}$  Overdrive voltage

i.e., 
$$I_{D3} = \frac{1}{2} \mu_p C_{ox}(W/L)_3 [V_{DD} - |V_{th3}|_{max} - (V_{GS1} - |V_{th1}|)]^2$$

 $(W/L)_3 = I_{D5} / [\mu_p C_{ox} [V_{DD} - |V_{th3}|_{max} - V_{in(max)} + |V_{th1}|]^2]$ 

W/L of  $M_3$  is determined by using maximum ICMR [ $V_{in(max)}$ ]

 $(W/L)_3 = (W/L)_4$  as  $M_3$  and  $M_4$  form current mirror

Ensure that the pole and zero resulting from Cgs3 and Cgs4 capacitances are not dominant by confirming that the pole P3 is greater than 10 times the unity-gain bandwidth (GB).

i.e., 
$$P_3 = g_{m3}/2C_{gs3} > 10*GB$$

where 
$$C_{gs} = 2/3C_{ox}W/L$$
;

$$g_{m3} = 2 I_{D3} / \ \mu_n \, C_{ox} \, (W/L)_3 \, (V_{SG3} \text{ - } |V_{th3}|)$$

Size of M<sub>5</sub> NMOS transistor

Employing the minimum ICMR equation, compute  $V_{DS5}$  (sat) using the provided relation

 $V_{DS5} = V_{in(min)} - V_{SS} - (I_{D5}/(\mu_n C_{ox}(W/L)_1))^{1/2} - V_{th1(max)} \text{ (overdrive voltage of } M_5)$ 

Minimum ICMR equation is represented as

$$V_{in(min)} = [I_{DS}/\beta_1] + V_{th1+}V_{DS5+}V_{th5} - I_{D5} - \frac{1}{2}[\mu_n C_{ox}(W/L)_5(V_{GS} - V_{th5})^2]$$

- i.e.,  $(W/L)_5 = 2I_{D5} / \mu_n C_{OX} V_{DS5(sat)}$
- $\blacktriangleright$  Size of M<sub>6</sub> PMOS transistor
- > For reasonable phase margin ( $\sim 60^{\circ}$ ), the following relations should be satisfied.

 $g_{m6} = 2.2 g_{m4} (C_L/C_C)$   $M_6$  and  $M_4$  have  $V_{SG6} = V_{SG4}$   $g_{m6} >= 10g_{m1}$   $V_{SG4} = V_{SG6}$  gives  $(W/L)_6 = (W/L)_4 * (g_{m6}/g_{m4})$ 

➢ Calculation of I<sub>D</sub>

$$\begin{split} I_{D5} \, can \ be \ evaluated \ by \ knowing & g_{m6} \ and \ (W/L)_6 \\ g_{m6} = & [2\mu_p C_{OX}(W/L)_6 I_{D6}]^{1/2} \\ i.e., \ g_{m6}^2 = & 2\mu_p C_{OX}(W/L)_6 \ I_{D6} \\ I_{D6} = & g_{m6}^2/2\mu_p C_{OX}(W/L)_6 \end{split}$$

- Size of M<sub>7</sub> PMOS transistor
  - $(W/L)_7 = (I_{D7}/I_{D5})^* (W/L)_5$

since 
$$I_{D6}=I_{D7}$$
  
> Gain and Power dissipation  
Power dissipation check  
 $P_{(dis)} = (V_{DD} + |V_{SS}|) * (I_{D6} + I_{D5})$   
Check if  $P_{(dis) calculated} <= P_{(dis) desired}$   
Gain specification check  
 $A_V = g_{m2} g_{m6} (r_{o2} || r_{o4}) * (r_{o6} || r_{o7})$   
 $I_{D2} = I_{D4}, r_{o2} = 1/\lambda_2 I_{D2}, r_{o4} = 1/\lambda_4 I_{D4}$   
 $r_{o2} || r_{o4} = 1/(\lambda_2 I_{D2} + \lambda_4 I_{D4})$   
Since  $I_{D2} = I_{D4}$   
 $r_{o2} || r_{o4} = 1/I_{D2}(\lambda_2 + \lambda_4)$   
 $I_{D6} = I_{D7}, r_{o6} = 1/\lambda_6 I_{D6}, r_{o7} = 1/\lambda_7 I_{D7}$   
 $r_{o6} || r_{o7} = 1/(I_{D6}\lambda_6 + I_{D7}\lambda_7)$   
Since  $I_{D6} = I_{D7}, r_{o6} || r_{o7} = 1/I_{D6}(\lambda_6 + \lambda_7)$   
 $A_V = g_{m2}g_{m6}(r_{o2} || r_{o4}) * (r_{o6} || r_{o7})$ 

Check if  $A_{V \text{ calculated}} > A_{V \text{ desired}}$ 

# 3. RESULTS

### **Frequency Response :**

In the frequency response shown in fig. we got a good gain over wide range of frequencies with high gain of around 65dB.We can observe that gainbandwidth product of nearly 30M Hz which provides a good gain over maximum of frequencies.



Figure 3.1. Gain & phase plot

Table 3.1: Parameters obtained after Simulation with  $V_{cm}$ =0.8V and 1.6V

| PARAMETERS | VALUES     |            |  |
|------------|------------|------------|--|
|            | Vcm = 0.8V | Vcm = 1.6V |  |
| Supply     | 1.8 V      | 1.8 V      |  |

| Channel Length    | 90nm        | 90nm         |  |
|-------------------|-------------|--------------|--|
| Load Capacitance  | 2pF         | 2pF          |  |
| $\mu_n C_{ox}$    | 326.66µm    | 327.4 µm     |  |
| $\mu_p C_{ox}$    | 171.28µm    | 171 µm       |  |
| Gain              | 65.66 dB    | 64.23 dB     |  |
| Slew Rate         | 20 V /µ.sec | 20 V / µ.sec |  |
| UGF               | 28 M Hz     | 30 M Hz      |  |
| 3dB Bandwidth     | 16.47 K Hz  | 19.33 K Hz   |  |
| Phase Margin      | 64 deg      | 63 deg       |  |
| Power Dissipation | 291 µW      | 316 µW       |  |

**Table 3.2:** W/L specifications of Op-Amp with  $V_{cm} = 1.6V$ .

| MOSFET                                        | W/L in μm |
|-----------------------------------------------|-----------|
| <i>M</i> <sub>1</sub> , <i>M</i> <sub>2</sub> | 3/0.5     |
| $M_{3}, M_{4}$                                | 7/0.5     |
| M <sub>5</sub> , M <sub>8</sub>               | 6/0.5     |
| <i>M</i> <sub>6</sub>                         | 87/0.5    |
| <i>M</i> <sub>7</sub>                         | 37.5/0.5  |

#### **Parametric Analysis :**

With respect to V<sub>cm</sub>:

The change in gain, phase, and other parameters is analyzed with respect to variations in common mode voltage is shown in figure. In this we can deduce that gain, phase, bandwidth and unity gain frequency are almost remain same for various  $V_{cm}$  which suggests that design can be operated over wide range of input voltages with same performance. Only power dissipation increases minutely with  $V_{cm}$ .



Figure 3.2 Parametric analysis with respect to  $V_{cm}$ 

With respect to Cc:

The change in gain, phase, and other parameters is analyzed with respect to variations in coupling capacitance which acts as a feedback element is shown in figure. In this we can deduce that gain and phase various slightly for various Cc .Bandwidth remains same, unity gain frequency decreases

with increase in Cc and power dissipation decreases slightly at lower capacitances and become constant at higher frequencies.



Figure 3.3 Parametric analysis with respect to C<sub>c</sub>

With respect to C<sub>L</sub>:

The change in gain, phase, and other parameters is analyzed with respect to variations in load capacitance which acts as a feedback element is shown in figure. In this we can deduce that gain and phase various slightly for various  $C_L$  at higher frequencies only .Bandwidth remains same, unity gain frequency decreases with increase in  $C_L$  and, power dissipation decreases slightly in micro watts at lower capacitances and become constant at higher frequencies.



Figure 3.4. Parametric analysis with respect to CL

## 4. APPLICATIONS:

Linear amplifiers such as op amps have many different applications. It has high open loop gain, high input impedance and low output impedance. It has a high common mode rejection r atio. Due to these favorable properties, it is used in various applications. In this article, we will disc uss some of the most important uses of op-amps

### Adder:



Figure 4.1. Circuit diagram of an op-amp based adder

Heritage Research Journal | ISSN No: 0474-9030 | https://heritageresearchjournal.com/

$$V_{0} = -R_{f} \left( \frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} \right)$$

$$R_{1} = R_{2} = 8k \ ohm \qquad R_{f} = 16k \ ohm \qquad = -2 \ (V_{1} + V_{2})$$

Here we got an amplification factor of 2.



Figure 4.2. Gain plot of adder with gain

Subtractor:



Figure 4.3. Circuit diagram of an op-amp based subtractor

$$V_0 = V_1 \left(\frac{R_3}{R_2 + R_3}\right) \left(1 + \frac{R_f}{R_1}\right) - \frac{R_f}{R_1} V_2$$
  
if  $R_1 = R_2 = R_3 = 10k$ ;  $R_f = 100k$ ;  $V_1 = 150$  mV,  $V_2 = 50$  mV

On substituting above values in above equation we can get an output voltage of 325 mV with an amplification factor of 2.16.



Figure 4.4. Transient Response of Subtractor with gain

## **Differentiato**r





$$V_0 = -RC \frac{dV_i}{dt}$$

 $R = 10k \text{ ohm}, C = 1 fF, V_i = 500 \sin(2\pi \times 1000t)$ 

On substituting above values in the equation we can get an output peak to peak voltage of  $V_{pp} = 0.06 \mu w$ 



Figure 4.6. Sine and Square wave plot of differentiator

**Integrator:** 



Figure 4.7. Circuit diagram of an op-amp based Integrator

$$V_0 = -\frac{1}{RC} \int V_i dt$$
$$V_i = 500 sin(2\pi \times 1000t) mv$$
$$R = 8.5k ohm \qquad C = 10 nF$$

On substituting above values in the equation and on integration we can get an output peak to peak voltage of  $V_{pp} = 1.87V$ .



Figure 4.8 Sine and Square wave plot of Integrator

**Buffer:** 



Figure 4.9. Circuit diagram of an op-amp based Buffer

Buffer acts as an element to separate points of two different impedances and passes input same to output.

V out=Vin.



Figure 4.10. Transient Response of Buffer

## 5. CONCLUSION:

**Table 5.1** shows comparison of this work with some references. If we consider ref [2], for same load capacitance of 2pF and power supply voltage of little higher we got increase in gain from 56.1 dB to 65.66dB and got low power dissipation of 291  $\mu$ W, but decrease in phase margin from 77° to 64° and decrease in unity gain frequency.

 Table 5.1: Comparison of Two stage Op-Amp Reference

| PARAMETERS      | Ref [2] | Ref [3] | Ref [4] |
|-----------------|---------|---------|---------|
| V <sub>cm</sub> | -       | -       | 0.9V    |

| Power Supply          | 1V      | 3.3 V    | 1.8V   |
|-----------------------|---------|----------|--------|
| Channel Length        | 65nm    | 180nm    | 90nm   |
| Load Capacitance      | 2pF     | 5pF      | 12pF   |
| $\mu_n C_{ox}(A/v^2)$ | -       | -        | 320    |
| $\mu_p C_{ox}(A/v^2)$ | -       | -        | 179    |
| Gain(dB)              | 56.1    | 106.31   | 61     |
| Slew Rate             | -       | 3.87V/µs | 18V/µs |
| Unity Gain            | 0.45GHz | 48.62    | 30 MHz |
| Frequency             |         | MHz      |        |
| 3dB Bandwidth         | -       | 198.1 Hz | -      |
| Phase Margin          | 77°     | 57.53°   | 60°    |
| Power Dissipation     | 1600 μW | 685 µW   | -      |

The design of a two-stage operational amplifier involves careful consideration of several key parameters such as gain, bandwidth, stability, and power consumption. Through a systematic design process that includes selecting appropriate transistor sizes, biasing schemes, and compensation techniques, it's possible to achieve a high-performance op-amp that meets the design requirements.

Overall, the design of a two-stage op-amp requires careful consideration of all the parameters and trade-offs involved, and it can be a challenging but rewarding process when done successfully. With the right design choices, a two-stage op-amp can provide high gain, low distortion, and stable operation for a wide range of applications.

#### **REFERENCES:**

- [1] Allen, Phillip E, CMOS Analog Circuit Design" Oxford University Press, 2012.
- [2] Hong Chen, Vladimir Milovanovic and Horst Zimmermann, "A High Speed Two-Stage Dual-Path Operational Amplifier in 40nm Digital CMOS," 19th International Conference on Mixed Design of Integrated Circuits and Systems, (2012), pp.198-202.
- [3] Abhilash K N, Shakthi Bose and Anu Gupta, "A High Gain, High CMRR Two-Stage Fully Differential Amplifier Using gm/Id technique for Bio-medical Applications," IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics ,(2013), pp.40-45.
- [4] G. Appala Naidu, "Design of Low Offset Voltage In Second Stage CMOS Operational Amplifier Using 90nm Technology," i-manager's Journal on Circuits and Systems, vol.10, no.1,pp.43-48, 2022.

- [5] Pugliese, F. A. Amoroso, G. Cappuccino, and G. Cocorullo, "Settling-Time-Oriented Design Procedure for Two- Stage Amplifiers with Current-Buffer Miller Compensation," 4th European Conference on Circuits and Systems for Communications, (2008),pp.114-117.
- [6] Paul J. Hurst, H. Lewis, John P. Keane and Kenneth C. Dyer, "Miller Compensation Using Current Buffers in Fully Differential CMOS Two-Stage Operational Amplifier," IEEE Transactions on Circuits and Systems—I: Regular Papers, Vol. 51, No. 2, 2004, pp.275-285.
- [7] Rosario Mita, Gaetano Palumbo and Salvatore Pennisi, "Low-Voltage High-Drive CMOS Current Feedback Op-Amp", IEEE Transactions on Circuits and Systems—II: Express Briefs, VOL. 52, NO. 6, 2005, pp.317-321.
- [8] Md. Abdullah-Al-Kaiser and Ismat Jarin, "High Gain Low Offset Faster Two Stage CMOS Op-Amp and Effects of Aspect Ratios on Gain", IEEE International WIE Conference on Electrical and Computer Engineering, (2017), pp.253-256.
- [9] Muhammad Syamsi Mohd Taufik, Anis Nurashikin Nordin, Sheroz Khan and Ahmad Anwar Zainuddin, "Design of Two-Stage CMOS Amplifier for Quartz Crystal Resonator," 3 IEEE International Conference on Circuits and Systems, (2013), pp.135-139.
- [10] Abhilash K N, Shakthi Bose and Anu Gupta, "A High Gain, High CMRR Two-Stage Fully Differential Amplifier Using gm/Id technique for Bio-medical Applications," IEEE Postgraduate Research in Microelectronics and Electronics Asia, (2013), pp.40-45.
- [11] I. M. Filanovsky, Md. Mahbub Reja and Ahmed Allam, "A New Configuration of CMOS Two-Stage Wide-Band Amplifier, "7th Midwest Symposium on Circuits and Systems, (2004), pp, 13-16.
- [12] C. L. Kavyashree, M. Hemambika, K. Dharani, Ananth V Naik and M. P. Sunil. "Design and implementation of two stage CMOS operational amplifier using 90nm technology", International Conference on Inventive Systems and Control (ICISC), (2017),pp.1-4.
- [13] T Aparna, Sreenivasulu Polineni and M. S. Bhat. "A Three-Stage Operational Transconductance Amplifier for Delta Sigma Modulator," IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), (2018), pp.152-157.